High‐Speed Pulse Amplitude Discriminator

1958 ◽  
Vol 29 (7) ◽  
pp. 595-596 ◽  
Author(s):  
F. J. M. Farley
Keyword(s):  
Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 39
Author(s):  
Masahiro Nada ◽  
Fumito Nakajima ◽  
Toshihide Yoshimatsu ◽  
Yasuhiko Nakanishi ◽  
Atsushi Kanda ◽  
...  

We discuss the structural consideration of high-speed photodetectors used for optical communications, focusing on vertical illumination photodetectors suitable for device fabrication and optical coupling. We fabricate an avalanche photodiode that can handle 100-Gbit/s four-level pulse-amplitude modulation (50 Gbaud) signals, and pin photodiodes for 100-Gbaud operation; both are fabricated with our unique inverted p-side down (p-down) design.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Festus Idowu Oluwajobi ◽  
Nguyen Dong-Nhat ◽  
Amin Malekmohammadi

AbstractIn this paper, the performance of a novel multilevel signaling based on Manchester code namely four-level Manchester Coding (4-MC) technique is investigated for next generation high-speed optical fiber communication links. The performance of 4-MC is studied and compared with conventional Manchester modulation and four-level pulse amplitude modulation (4-PAM) formats in terms of receiver sensitivity, spectral efficiency and dispersion tolerance at the bit rate of 40 Gb/s. The bit error rate (BER) calculation model for the proposed multilevel scheme has also been developed. The calculated receiver sensitivity and the chromatic dispersion tolerance at the BER of 10–9 of the proposed scheme are −22 dBm and 67.5 ps/nm, respectively. It is observed that, 4-MC scheme is superior in comparison to 4-PAM by 3.5 dB in terms of receiver sensitivity in back-to-back scenario. Therefore, the proposed scheme can be considered as an alternative to current 4-PAM system.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yanhui Ma ◽  
Sayoko E. Moroi ◽  
Cynthia J. Roberts

Purpose: To assess ocular rigidity using dynamic optical coherence tomography (OCT) videos in glaucomatous and healthy subjects, and to evaluate how ocular rigidity correlates with biomechanical and morphological characteristics of the human eye.Methods: Ocular rigidity was calculated using Friedenwald's empirical equation which estimates the change in intraocular pressure (IOP) produced by volumetric changes of the eye due to choroidal pulsations with each heartbeat. High-speed OCT video was utilized to non-invasively measure changes in choroidal volume through time-series analysis. A control-case study design was based on 23 healthy controls and 6 glaucoma cases. Multiple diagnostic modalities were performed during the same visit including Spectralis OCT for nerve head video, Pascal Dynamic Contour Tonometry for IOP and ocular pulse amplitude (OPA) measurement, Corvis ST for measuring dynamic biomechanical response, and Pentacam for morphological characterization.Results: Combining glaucoma and healthy cohorts (n = 29), there were negative correlations between ocular rigidity and axial length (Pearson R = −0.53, p = 0.003), and between ocular rigidity and anterior chamber volume (R = −0.64, p = 0.0002). There was a stronger positive correlation of ocular rigidity and scleral stiffness (i.e., stiffness parameter at the highest concavity [SP-HC]) (R = 0.62, p = 0.0005) compared to ocular rigidity and corneal stiffness (i.e., stiffness parameter at the first applanation [SP-A1]) (R = 0.41, p = 0.033). In addition, there was a positive correlation between ocular rigidity and the static pressure-volume ratio (P/V ratio) (R = 0.72, p < 0.0001).Conclusions: Ocular rigidity was non-invasively assessed using OCT video and OPA in a clinic setting. The significant correlation of ocular rigidity with biomechanical parameters, SP-HC and P/V ratio, demonstrated the validity of the ocular rigidity measurement. Ocular rigidity is driven to a greater extent by scleral stiffness than corneal stiffness. These in vivo methods offer an important approach to investigate the role of ocular biomechanics in glaucoma.


2018 ◽  
Vol 10 (12) ◽  
pp. 118 ◽  
Author(s):  
Jinlong Wei ◽  
Ji Zhou ◽  
Elias Giacoumidis ◽  
Paul Haigh ◽  
Jianming Tang

To address the continuous growth in high-speed ubiquitous access required by residential users and enterprises, Telecommunication operators must upgrade their networks to higher data rates. For optical fiber access networks that directly connect end users to metro/regional network, capacity upgrade must be done in a cost- and energy-efficient manner. 40 Gb/s is the possible lane rate for the next generation passive optical networks (NG-PONs). Ideally, existing 10 G PON components could be reused to support 40 Gb/s lane-rate NG-PON transceiver, which requires efficient modulation format and digital signal processing (DSP) to alleviate the bandwidth limitation and fiber dispersion. The major contribution of this work is to offer insight performance comparisons of 40 Gb/s lane rate electrical three level Duobinary, optical Duobinary, and four-level pulse amplitude modulation (PAM-4) for incorporating low complex DSPs, including linear and nonlinear Volterra equalization, as well as maximum likelihood sequence estimation. Detailed analysis and comparison of the complexity of various DSP algorithms are performed. Transceiver bandwidth optimization is also undertaken. The results show that the choices of proper modulation format and DSP configuration depend on the transmission distances of interest.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Tingting Fu ◽  
Huanghong Zhu ◽  
Han Hai ◽  
Haksrun Lao

Communication is one of the most important foundations in the Internet of Things. Although some cutting-edge technologies, such as 5G, have greatly empowered edge computing, electromagnetic interference and pollution make them impracticable in many environments. The visible light communication (VLC) is a new type of wireless communication technology with appealing benefits not presented in radio communications. VLC allows a lamp or other light source to not only serve as illumination but also simultaneously transmit data. Although traditional VLC multiplexing technologies have been able to achieve a high-speed data transmission rate, they require all receivers to use the same modulation means. In many scenarios, various-type receivers coexist; it is costly to incorporate multiple senders to implement adaptive content distribution in on-demand services. In this paper, we propose a new type of VLC multiplexing system, which realizes end-edge data transmission through pulse position modulation (PPM), pulse width modulation (PWM), and pulse amplitude modulation (PAM) simultaneously. Therefore, one edge server can serve multiple types of end-users without interference. In order to evaluate the performance of the system, we conduct experiments with different settings of communication distance, communication angle, and different environmental light conditions. For three modulations, the proposed system can achieve a transmission speed three times as that for a single modulation, and reach the accuracy rate of up to 99% within the proper communication range.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000730-000734
Author(s):  
B Haentjens ◽  
G Desruelles ◽  
G Chrétien ◽  
A Leborgne ◽  
Y Haentjens ◽  
...  

High speed transmission systems using optical fiber are now focusing on 4-level PAM (Pulse Amplitude Modulation) format. This is requesting ultra-wideband electronic system in package, with a high phase linearity behavior in order to drive the electro-optical modulators. Moreover, new power DAC (Digital to Analog Converter) dies, are now available to generate up to 56 GBd, 4-level PAM signals, and providing 4Vpp of differential output amplitude swing. High frequency studies have been pursued to provide system integration in a BGA (Ball Grid Array) package. The BGA package transitions optimization and the configuration of multi-lines carriers, becomes a key step in the design flow. In this paper, some steps of the design, manufacturing process of the SIP (System In Package) and its demonstration board are proposed. The choices of the package, the thermal management, the clock management function are studied according to the final environmental constraint of the SIP. The data lines phase skew are analyzed with the support of EM (Electro Magnetic) simulations to better understand the potential impact on the output eye. Finally, the BGA package transition, simulated and measured results are compared, from DC up to 40 GHz and the measured SIP output, 4 levels, 56GBps eye diagram is presented.


Sign in / Sign up

Export Citation Format

Share Document