The impact of organic amendments, mulching and tillage on plant nutrition, Pythium root rot, root-knot nematode and other pests and diseases of capsicum in a subtropical environment, and implications for the development of more sustainable vegetable farming systems

2008 ◽  
Vol 37 (2) ◽  
pp. 123 ◽  
Author(s):  
G. R. Stirling ◽  
L. M. Eden
2006 ◽  
Vol 32 (4) ◽  
pp. 307-321 ◽  
Author(s):  
John Clifford Sutton ◽  
Coralie Rachelle Sopher ◽  
Tony Nathaniel Owen-Going ◽  
Weizhong Liu ◽  
Bernard Grodzinski ◽  
...  

The etiology and epidemiology of Pythium root rot in hydroponically-grown crops are reviewed with emphasis on knowledge and concepts considered important for managing the disease in commercial greenhouses. Pythium root rot continually threatens the productivity of numerous kinds of crops in hydroponic systems around the world including cucumber, tomato, sweet pepper, spinach, lettuce, nasturtium, arugula, rose, and chrysanthemum. Principal causal agents include Pythium aphanidermatum, Pythium dissotocum, members of Pythium group F, and Pythium ultimum var. ultimum. Perspectives are given of sources of initial inoculum of Pythium spp. in hydroponic systems, of infection and colonization of roots by the pathogens, symptom development and inoculum production in host roots, and inoculum dispersal in nutrient solutions. Recent findings that a specific elicitor produced by P. aphanidermatum may trigger necrosis (browning) of the roots and the transition from biotrophic to necrotrophic infection are considered. Effects on root rot epidemics of host factors (disease susceptibility, phenological growth stage, root exudates and phenolic substances), the root environment (rooting media, concentrations of dissolved oxygen and phenolic substances in the nutrient solution, microbial communities and temperature) and human interferences (cropping practices and control measures) are reviewed. Recent findings on predisposition of roots to Pythium attack by environmental stress factors are highlighted. The commonly minor impact on epidemics of measures to disinfest nutrient solution as it recirculates outside the crop is contrasted with the impact of treatments that suppress Pythium in the roots and root zone of the crop. New discoveries that infection of roots by P. aphanidermatum markedly slows the increase in leaf area and whole-plant carbon gain without significant effect on the efficiency of photosynthesis per unit area of leaf are noted. The platform of knowledge and understanding of the etiology and epidemiology of root rot, and its effects on the physiology of the whole plant, are discussed in relation to new research directions and development of better practices to manage the disease in hydroponic crops. Focus is on methods and technologies for tracking Pythium and root rot, and on developing, integrating, and optimizing treatments to suppress the pathogen in the root zone and progress of root rot.


2013 ◽  
Vol 54 (1) ◽  
pp. 65-70 ◽  
Author(s):  
I. A. Siddiqui ◽  
S. S.. Shaukat ◽  
S. Ehteshamul-Haque

Efficacy of two strains of <i>Pseudomonas aeruginosa</i> (Pa-5 and IE-2) and <i>Bacillus subtilis</i> isolate alone or in conjunction with neem cake or <i>Datura fastuosa</i> was tested for the management of three soilbrne root-infecting fungi including <i>Macrophomina phaseolina, Fusarium solani</i> and <i>Rhizoctonia solani</i> and the root-knot nematode, <i>Meloidogyne javanica</i> on uridbean. Biocontrol bacteria used in combination with either neem cake or <i>D.fastuosa</i> gave better control of the root-rot and root-knot infection with the enhancement of growth of uridbean compared to the use ofeither component alone. Neem cake l% w/w mixed with <i>P.aeruginosa</i> strain IE-2 caused greatest inhibition of the root-knot development due to <i>M.javanica, P.aeruginosa</i> and <i>B.subtilis</i> used with organic amendment also increased <i>Bradyrhizobium</i>-nodules in the root system.


2012 ◽  
Vol 61 (1) ◽  
pp. 115-121 ◽  
Author(s):  
Marium Tariq ◽  
Shahnaz Dawar ◽  
Fatima S. Mehdi ◽  
Muhammad J. Zaki

Leaves, stem and pneumatophore of <i>Avicennia marina</i> and leaves and stem of <i>Rhizophora mucronata</i> were used as the organic amendments at 0.1, 1 and 5% concentrations in the control of root rot fungi like (<i>Fusarium</i> spp., <i>Rhizoctonia solani</i> and <i>Macrophomina phasoelina</i>) and root knot nematode <i>Meloidogyne javanica</i> on potato. In pot experiments, germination of seeds, shoot length, shoot weight, root length, root weight and number of knots were significantly increased when plant parts like leaves, stem and pneumatophore of <i>A. marina</i> and <i>R. mucronata</i> were used at 1 and 5% concentrations. There was a complete suppression in infection of <i>R. solani</i> and <i>M. phaseolina</i> when <i>A. marina</i> and <i>R. mucronata</i> were used at 5% concentration on potato. Maximum inhibition of knots of <i>M. javanica</i> was observed when powder made from mangrove plant parts was used at 1 and 5% concentrations. Powder from all plant parts, like leaves, stem and pneumatophore, was effective in suppression of root infecting fungi and root knot nematode.


2013 ◽  
Vol 726-731 ◽  
pp. 4017-4020
Author(s):  
Yan Ming Zhang ◽  
He Qi Wu ◽  
Yang Bai ◽  
Hong Wang ◽  
Ji Lin Li ◽  
...  

As a powerful tool, biodiversity can be applied for assessing sustainability levels in agroecosystems as well as assessing both positive and negative effects of different agricultural activities and management strategies on the environment. It is the variety of life, including variation among genes, species and functional traits, which can increase the productivity of farming systems in a range of growing conditions, and also can maintain and increase soil fertility and mitigate the impact of pests and diseases. More diverse farming systems are generally more resilient in the face of perturbations, thus enhancing food security. For agriculture, biodiversity can be also expressed as planned (agricultural) and associated (para-agricultural and extra-agricultural) biodiversity, which reflect different functions of plants, animals and micro-organisms in agroecosystems. This paper introduces the categories of biodiversity in agroecosystems, assesses the functional biodiversity in sustainable agroecosystems, and prospects the significant of biodiversity in sustainable agroecosystems.


NeoBiota ◽  
2021 ◽  
Vol 65 ◽  
pp. 137-168
Author(s):  
Mark R. McNeill ◽  
Xiongbing Tu ◽  
Colin M. Ferguson ◽  
Liping Ban ◽  
Scott Hardwick ◽  
...  

For both New Zealand and China, agriculture is integral to the economy, supporting primary production in both intensive and extensive farming systems. Grasslands have important ecosystem and biodiversity functions, as well providing valuable grazing for livestock. However, production and persistence of grassland and forage species (e.g. alfalfa) is not only compromised by overgrazing, climate change and habitat fragmentation, but from a range of pests and diseases, which impose considerable costs on growers in lost production and income. Some of these pest species are native, but increasingly, international trade is seeing the rapid spread of exotic and invasive species. New Zealand and China are major trading partners with significant tourist flow between the two countries. This overview examines the importance of grasslands and alfalfa in both countries, the current knowledge on the associated insect pest complex and biocontrol options. Identifying similarities and contrasts in biology and impacts along with some prediction on the impact of invasive insect species, especially under climate change, are possible. However, it is suggested that coordinated longitudinal ecological research, carried out in both countries using sentinel grass and forage species, is critical to addressing gaps in our knowledge of biology and impact of potential pests, along with identifying opportunities for control, particularly using plant resistance or biological control.


Author(s):  
Jock R. Anderson ◽  
Regina Birner ◽  
Latha Najarajan ◽  
Anwar Naseem ◽  
Carl E. Pray

Abstract Private agricultural research and development can foster the growth of agricultural productivity in the diverse farming systems of the developing world comparable to the public sector. We examine the extent to which technologies developed by private entities reach smallholder and resource-poor farmers, and the impact they have on poverty reduction. We critically review cases of successfully deployed improved agricultural technologies delivered by the private sector in both large and small developing countries for instructive lessons for policy makers around the world.


2021 ◽  
Vol 13 (12) ◽  
pp. 6673
Author(s):  
Lidia Luty ◽  
Kamila Musiał ◽  
Monika Zioło

The functioning of various agroecosystems is nowadays shaped by different farming systems, which may impair their functions, as well as being beneficial to them. The benefits include ecosystem services, defined as economic and noneconomic values gained by humans from ecosystems, through supporting soil formation and nutrient circulation, and the impact of agriculture on climate and biodiversity. Their mutual flow and various disturbances depend on the agroecosystem’s management method, which is associated with the type of management of agricultural land (AL) in individual farms. This paper raises a problem of transformation in the structure of three main farming systems in Poland, in 2004–2018, in relation to the implementation of 16 selected ecosystem services and their scale. Special attention was given to organic farming, as the most environmentally friendly and sustainable. The analysis demonstrates the increase in ALs in that type of production during the analyzed period of time. Disparities of transformation associated with the type of agricultural system were noticeable at the regional level, which were presented in 16 Polish voivodeships. The results of the analysis confirm that the organic system, which is an important carrier of various ecosystem services, gained a stable position. Moreover, areas with integrated farming still do not exceed 0.5% of total agricultural lands in such voivodeships. The analysis of factors influencing the deterioration or disappearance of selected environmental services characterizing agricultural systems indicates the need to depart from an intensive conventional management system.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Federica Zanetti ◽  
Barbara Alberghini ◽  
Ana Marjanović Jeromela ◽  
Nada Grahovac ◽  
Dragana Rajković ◽  
...  

AbstractPromoting crop diversification in European agriculture is a key pillar of the agroecological transition. Diversifying crops generally enhances crop productivity, quality, soil health and fertility, and resilience to pests and diseases and reduces environmental stresses. Moreover, crop diversification provides an alternative means of enhancing farmers’ income. Camelina (Camelina sativa (L.) Crantz) reemerged in the background of European agriculture approximately three decades ago, when the first studies on this ancient native oilseed species were published. Since then, a considerable number of studies on this species has been carried out in Europe. The main interest in camelina is related to its (1) broad environmental adaptability, (2) low-input requirements, (3) resistance to multiple pests and diseases, and (4) multiple uses in food, feed, and biobased applications. The present article is a comprehensive and critical review of research carried out in Europe (compared with the rest of the world) on camelina in the last three decades, including genetics and breeding, agronomy and cropping systems, and end-uses, with the aim of making camelina an attractive new candidate crop for European farming systems. Furthermore, a critical evaluation of what is still missing to scale camelina up from a promising oilseed to a commonly cultivated crop in Europe is also provided (1) to motivate scientists to promote their studies and (2) to show farmers and end-users the real potential of this interesting species.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1477
Author(s):  
Antonio Marín-Martínez ◽  
Alberto Sanz-Cobeña ◽  
Mª Angeles Bustamante ◽  
Enrique Agulló ◽  
Concepción Paredes

In semi-arid vineyard agroecosystems, highly vulnerable in the context of climate change, the soil organic matter (OM) content is crucial to the improvement of soil fertility and grape productivity. The impact of OM, from compost and animal manure, on soil properties (e.g., pH, oxidisable organic C, organic N, NH4+-N and NO3−-N), grape yield and direct greenhouse gas (GHG) emission in vineyards was assessed. For this purpose, two wine grape varieties were chosen and managed differently: with a rain-fed non-trellising vineyard of Monastrell, a drip-irrigated trellising vineyard of Monastrell and a drip-irrigated trellising vineyard of Cabernet Sauvignon. The studied fertiliser treatments were without organic amendments (C), sheep/goat manure (SGM) and distillery organic waste compost (DC). The SGM and DC treatments were applied at a rate of 4600 kg ha−1 (fresh weight, FW) and 5000 kg ha−1 FW, respectively. The use of organic amendments improved soil fertility and grape yield, especially in the drip-irrigated trellising vineyards. Increased CO2 emissions were coincident with higher grape yields and manure application (maximum CO2 emissions = 1518 mg C-CO2 m−2 d−1). In contrast, N2O emissions, mainly produced through nitrification, were decreased in the plots showing higher grape production (minimum N2O emissions = −0.090 mg N2O-N m−2 d−1). In all plots, the CH4 fluxes were negative during most of the experiment (−1.073−0.403 mg CH4-C m−2 d−1), indicating that these ecosystems can represent a significant sink for atmospheric CH4. According to our results, the optimal vineyard management, considering soil properties, yield and GHG mitigation together, was the use of compost in a drip-irrigated trellising vineyard with the grape variety Monastrell.


Sign in / Sign up

Export Citation Format

Share Document