Effects of a pharmaceutical mixture at environmentally relevant concentrations on the amphipod Gammarus fossarum

2010 ◽  
Vol 61 (2) ◽  
pp. 196 ◽  
Author(s):  
Sabine Dietrich ◽  
Shana Dammel ◽  
Florian Ploessl ◽  
Franz Bracher ◽  
Christian Laforsch

The continuous discharge of pharmaceuticals into the environment results in the chronic exposure of aquatic organisms to complex drug mixtures. We examined the influence of a mixture of pharmaceuticals (carbamazepine (CBZ), diclofenac (DIC), metoprolol (MET) and 17α-ethinylestradiol (EE2)) at environmentally relevant (‘env’) and artificially high (‘high’) concentrations on Gammarus fossarum. Different sublethal responses such as moulting, reproduction and the content of the energy-storage component glycogen were analysed. The drug mixture influenced the moulting behaviour of gammarids at both the ‘env’ and ‘high’ concentration levels, leading to a discontinuous increase of body length in successive moults, compared with the constant increase of body length in the control treatment. Moreover, the time between successive moults of animals exposed to the ‘env’ and ‘high’ pharmaceutical concentrations was decreased because of shortened intermoult periods. We observed no significant impact of the pharmaceuticals on reproduction. In addition, the content of glycogen was not significantly affected by the drug mixture. Permanent exposure of G. fossarum to a wider range of pharmaceuticals in natural aquatic systems may influence moulting behaviour and accompanied life-history parameters, followed by severe ecological consequences as gammarids play an important role in many freshwater ecosystems of the northern hemisphere.

Author(s):  
Nael Mohammed Sarheed ◽  
Osamah Faisal Kokas ◽  
Doaa Abd Alabas Muhammed Ridh

The plant of castor is widely spread in the Iraqi land, and characterized with containing ricin toxin, which has a very serious effects, and because the seeds of this plant scattered in the agricultural soil and rivers water, which increases the exposure of humans and animals to these beans. Objective: This experiment was designed to study the effect of high concentration of castor bean powder in some physiological and biochemical parameters and changes in some tissues of the body, as well as trying to use doxycycline to reduce the effects of ingestion of these seeds. Materials and Methods: In the experiment, 24 local rabbits were raised and fed in the Animal House of the Faculty of Medicine / Al-Muthanna University, then divided into four groups and treated for three weeks (21 days), Control group: treated with normal saline solution (0.9) orally throughout the experiment, G1: was treated orally with a concentration of 25 mg / kg of castor bean powder daily during the experiment, G2 : orally treated 25 mg / kg of castor bean and 25 mg / kg of doxycycline, G3: orally treated 25 mg / kg of castor powder with 50 mg / kg of doxycycline daily throughout the trial period. Results: The results of the experiment showed significant changes (P less than 0.05) in all physiological and biochemical blood tests when compared with control group. There was a significant decrease in PCV, Hb, RBC, T.protein and body weights, while demonstrated a significant increase in WBC, Urea, Creatinine, ALT, AST and ALP, with distortions in liver and kidney of animals that treated with Castor beans. In contrast, the treatment with doxycycline and caster beans showed significant improvement reflected by a normal proportion in physiological tests and biochemical tests with improvement in the tissues when compared to control group. Conclusions: It can be concluded from this study that castor bean has high toxic and pathogenic effects that may be dangerous to the life of the organism. Therefore, it is advisable to be cautious of these pills and avoid exposure to them, also recommended to take high concentrations of doxycycline treatment when infected with castor bean poisoning.


2020 ◽  
Vol 65 (9-10) ◽  
pp. 3-7
Author(s):  
V. V. Gostev ◽  
Yu. V. Sopova ◽  
O. S. Kalinogorskaya ◽  
M. E. Velizhanina ◽  
I. V. Lazareva ◽  
...  

Glycopeptides are the basis of the treatment of infections caused by MRSA (Methicillin-Resistant Staphylococcus aureus). Previously, it was demonstrated that antibiotic tolerant phenotypes are formed during selection of resistance under the influence of high concentrations of antibiotics. The present study uses a similar in vitro selection model with vancomycin. Clinical isolates of MRSA belonging to genetic lines ST8 and ST239, as well as the MSSA (ATCC29213) strain, were included in the experiment. Test isolates were incubated for five hours in a medium with a high concentration of vancomycin (50 μg/ml). Test cultures were grown on the medium without antibiotic for 18 hours after each exposure. A total of ten exposure cycles were performed. Vancomycin was characterized by bacteriostatic action; the proportion of surviving cells after exposure was 70–100%. After selection, there was a slight increase in the MIC to vancomycin (MIC 2 μg/ml), teicoplanin (MIC 1.5–3 μg/ml) and daptomycin (MIC 0.25–2 μg/ml). According to the results of PAP analysis, all strains showed an increase in the area under curve depending on the concentration of vancomycin after selection, while a heteroresistant phenotype (with PAP/AUC 0.9) was detected in three isolates. All isolates showed walK mutations (T188S, D235N, E261V, V380I, and G223D). Exposure to short-term shock concentrations of vancomycin promotes the formation of heteroresistance in both MRSA and MSSA. Formation of VISA phenotypes is possible during therapy with vancomycin.


1997 ◽  
Vol 35 (2-3) ◽  
pp. 339-345 ◽  
Author(s):  
M. G. Dubé ◽  
J. M. Culp

Experiments were conducted in artificial streams to determine the effects of increasing concentrations of biologically treated bleached kraft pulp mill effluent (BKPME) on periphyton and chironomid growth in the Thompson River, British Columbia. Periphyton growth, as determined by increases in chlorophyll a, was significantly stimulated at all effluent concentrations tested (0.25%, 0.5%, 1.0%, 5.0% and, 10.0%). Chironomid growth (individual weight) was also significantly stimulated at low effluent concentrations (≤1.0%). At higher concentrations (5.0% and 10.0%), chironomid growth was inhibited relative to the 1.0% treatment streams. Increases in growth were attributed to the effects of nutrient and organic enrichment from BKPME. The effluent contained high concentrations of phosphorus and appears to be an important source of carbon for benthic insects grazing on the biofilm. In high concentration effluent streams, chironomid growth decreased despite low levels of typical pulp mill contaminants. This suggests that other compounds in the effluent, such as wood extractives, may be inhibiting chironomid growth. These results support findings of field monitoring studies conducted in the Thompson River where changes in periphyton and chironomid abundance occurred downstream of the bleached kraft pulp mill.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 62
Author(s):  
Robert Cichowicz ◽  
Maciej Dobrzański

Spatial analysis of the distribution of particulate matter PM10, PM2.5, PM1.0, and hydrogen sulfide (H2S) gas pollution was performed in the area around a university library building. The reasons for the subject matter were reports related to the perceptible odor characteristic of hydrogen sulfide and a general poor assessment of air quality by employees and students. Due to the area of analysis, it was decided to perform measurements at two heights, 10 m and 20 m above ground level, using measuring equipment attached to a DJI Matrice 600 unmanned aerial vehicle (UAV). The aim of the measurements was air quality assessment and investigate the convergence of the theory of air flow around the building with the spatial distribution of air pollutants. Considerable differences of up to 63% were observed in the concentrations of pollutants measured around the building, especially between opposite sides, depending on the direction of the wind. To explain these differences, the theory of aerodynamics was applied to visualize the probable airflow in the direction of the wind. A strong convergence was observed between the aerodynamic model and the spatial distribution of pollutants. This was evidenced by the high concentrations of dust in the areas of strong turbulence at the edges of the building and on the leeward side. The accumulation of pollutants was also clearly noticeable in these locations. A high concentration of H2S was recorded around the library building on the side of the car park. On the other hand, the air turbulence around the building dispersed the gas pollution, causing the concentration of H2S to drop on the leeward side. It was confirmed that in some analyzed areas the permissible concentration of H2S was exceeded.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1252
Author(s):  
Hideo Yoshida ◽  
Tatsuru Nishikawa ◽  
Shoko Hikosaka ◽  
Eiji Goto

In Japan, red perilla leaves are used in the food and coloring industries, as well as in crude medicine. Perilla leaves contain a high concentration of phytochemicals such as perillaldehyde (PA) and rosmarinic acid (RA). The effects of UV-B radiation intensity (0.05–0.2 W m−2, UV-BBE: 0.041–0.083 W m−2), duration (3 or 6 h), and irradiation method (continuous or intermittent) for artificial nocturnal lighting using UV-B fluorescent lamps were evaluated on growth, flowering, and leaf phytochemical concentration in greenhouse-grown perilla. Under continuous UV-B irradiation at 0.1 W m−2 for 3 or 6 h, leaf color changed from red to green and leaf fresh weight decreased, compared with the control treatment. No leaf color change was observed under the 3-h treatment with UV-B radiation at 0.05 W m−2, wherein leaf fresh weight was similar to that of the control. Furthermore, RA concentration under continuous UV-B irradiation at 0.05 W m−2 for 3 h increased two-fold compared to that under control treatment, while PA concentration was not affected by UV-B irradiation. Thus, our data showed that continuous UV-B irradiation at 0.05 W m−2 for 3 h could effectively produce RA-rich perilla leaves without reducing in phenotypic quality or productivity. However, a 6-h intermittent illumination inhibited flowering without altering phytochemical concentration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Bidaud ◽  
D. Berling ◽  
D. Jamon ◽  
E. Gamet ◽  
S. Neveu ◽  
...  

AbstractThis paper is aimed at investigating the process of photocrosslinking under Deep-UV irradiation of nanocomposite thin films doped with cobalt ferrite magnetic nanoparticles (MNPs). This material is composed of a hybrid sol–gel matrix in which MNP can be introduced with high concentrations up to 20 vol%. Deep-UV (193 nm) is not only interesting for high-resolution patterning but we also show an efficient photopolymerization pathway even in the presence of high concentration of MNPs. In this study, we demonstrate that the photocrosslinking is based on the free radical polymerization of the methacrylate functions of the hybrid precursor. This process is initiated by Titanium-oxo clusters. The impact of the nanoparticles on the photopolymerization kinetic and photopatterning is investigated. We finally show that the photosensitive nanocomposite is suitable to obtain micropatterns with sub-micron resolution, with a simple and versatile process, which opens many opportunities for fabrication of miniaturized magneto-optical devices for photonic applications.


1984 ◽  
Vol 32 (9) ◽  
pp. 973-981 ◽  
Author(s):  
B W Lubit

Previous immunocytochemical studies in which an antibody specific for mammalian cytoplasmic actin was used showed that a high concentration of cytoplasmic actin exists at neuromuscular junctions of rat muscle fibers such that the distribution of actin corresponded exactly to that of the acetylcholine receptors. Although clusters of acetylcholine receptors also are present in noninnervated rat and chick muscle cells grown in vitro, neither the mechanism for the formation and maintenance of these clusters nor the relationship of these clusters to the high density of acetylcholine receptors at the neuromuscular junction in vivo are known. In the present study, a relationship between beta-cytoplasmic actin and acetylcholine receptors in vitro has been demonstrated immunocytochemically using an antibody specific for the beta-form of cytoplasmic actin. Networks of cytoplasmic actin-containing filaments were found in discrete regions of the myotube membrane that also contained high concentrations of acetylcholine receptors; such high concentrations of acetylcholine receptors have been described in regions of membrane-substrate contact. Moreover, when primary rat myotubes were exposed to human myasthenic serum, gross morphological changes, accompanied by an apparent rearrangement of the cytoplasmic actin-containing cytoskeleton, were produced. Although whether the distribution of cytoplasmic actin-containing structures was influenced by the organization of acetylcholine receptor or vice versa cannot be determined from these studies, these findings suggest that in primary rat muscle cells grown in vitro, acetylcholine receptors and beta-cytoplasmic actin-containing structures may be somehow connected.


1975 ◽  
Vol 5 (3) ◽  
pp. 419-423 ◽  
Author(s):  
Carey Borno ◽  
Iain E. P. Taylor

Stratified, imbibed Douglas fir (Pseudotsugamenziesii (Mirb.) Franco) seeds were exposed to 100% ethylene for times between 0 and 366 h. Germination rate and germination percentage were increased by treatments up to 48 h. The 12-h treatment gave largest stimulation; 30% enhancement of final germination percentage over control. Treatment for 96 h caused increased germination rate for the first 5 days but reduced the germination percentage. Germinants were subject to continuous exposure to atmospheres containing 0.1 – 200 000 ppm ethylene in air, but it did not stimulate growth, and the gas was inhibitory above 100 ppm. Although some effects of high concentrations of ethylene may have been due to the lowering of oxygen supplies, this alone was insufficient to account for the full inhibitory effect. The mechanism of stimulation by short-term exposure to ethylene is discussed.


1970 ◽  
Vol 16 (10) ◽  
pp. 959-963 ◽  
Author(s):  
R. W. Detroy ◽  
C. W. Hesseltine

The effect of two inhibitors on the formation of aflatoxin B1 synthetase activity in strain NRRL 2999 Aspergillus parasiticus has been studied. Aflatoxin B1 synthesizing activity was measured in vivo by incorporation of the 14C-methionine methyl group into aflatoxin B1. Cycloheximide at a concentration of 150 μg/ml blocks protein synthesis completely. If addition of cycloheximide is made before B1 synthetase appears, no activity accumulates; if added during accumulation, activity is frozen at the level reached at the time of addition. The cycloheximide effect is reversible since morphogenesis, total protein synthesis, and aflatoxin B1 synthetase activity all resume after removal of the inhibitor.DL-p-Fluorophenylalanine partially inhibits aflatoxin B1 synthesis in vivo; however, its effect upon macromolecular synthesis is incomplete even at high concentration levels. Once formed, the aflatoxin synthetase appears to maintain B1 synthesis when further protein synthesis is blocked; i.e., it is not rapidly degraded.


Sign in / Sign up

Export Citation Format

Share Document