Progestin priming before gonadotrophin stimulation and AI improves embryo development and normalises luteal function in the cat

2015 ◽  
Vol 27 (2) ◽  
pp. 360 ◽  
Author(s):  
Rosemary A. Stewart ◽  
Adrienne E. Crosier ◽  
Katharine M. Pelican ◽  
Budhan S. Pukazhenthi ◽  
Brandon D. Sitzmann ◽  
...  

Exogenous gonadotrophins administered before AI can adversely alter endocrine dynamics and inhibit embryo development in felids. In the present study, we tested the hypothesis that priming the domestic cat ovary with progestin mitigates the negative influence of gonadotrophin therapy by normalising early embryogenesis and luteal function. Queens were given either: (1) progestin pretreatment plus chorionic gonadotrophins (n = 8; primed); or (2) gonadotrophins only (n = 8; unprimed). Ovulatory response was assessed laparoscopically, and cats with fresh corpora lutea (CL) were inseminated in utero. Ovariohysterectomy was performed 3 days later to recover intra-oviductal embryos for in vitro culture; one ovary was prepared for histology, and CL from the remaining ovary were excised and assessed for progesterone content and targeted gene expression. Of the six primed and seven unprimed queens inseminated, embryo(s) were recovered from five individuals per group. Embryos from progestin-primed donors more closely simulated normal stage in vivo development (P < 0.05). No 2- or 4-cell embryos from either group developed beyond 16-cells in vitro; however, 50% of unprimed and 66.7% of primed (P > 0.05) 5–16-cell embryos progressed to morulae or blastocysts by Day 4 of culture. Although histological characteristics were unaffected by progestin priming (P > 0.05), luteal progesterone was unusually high (P < 0.05) in unprimed compared with primed cats (72.4 ± 5.8 vs 52.2 ± 5.5 ng mg–1, respectively). Two genes associated with progesterone biosynthesis (luteinising hormone receptor and 3β-hydroxysteroid dehydrogenase) were upregulated in unprimed versus primed individuals (P = 0.05 and P < 0.05, respectively), indicating potential mechanistic pathways for the protective influence of pre-emptive progestin treatment. Building on earlier findings that progestin priming prevents spontaneous ovulation, increases ovarian sensitivity to gonadotrophins and ensures a normative endocrine environment, the present study demonstrates that pretreatment with this steroid also benefits embryo development and normalisation of early luteal function.

1992 ◽  
Vol 4 (1) ◽  
pp. 77 ◽  
Author(s):  
JM Wallace ◽  
CJ Ashworth ◽  
RP Aitken ◽  
MA Cheyne

Induction of ovulation post partum is associated with a high incidence of prematurely regressing corpora lutea. However, inadequate luteal function is not the sole reason for pregnancy failure, because ewes with normal corpus luteum function and successful fertilization also fail to establish pregnancies. The effects of suckling status and the interval from post partum to rebreeding on corpus luteum and endometrial function were examined in vivo and in vitro. Ewes were weaned early or allowed to lactate, induced to ovulate using a progesterone-impregnated controlled internal drug release device and an intramuscular injection of pregnant mare serum gonadotrophin, and inseminated (intrauterine) at either 21 or 35 days post partum (n = 10 per group). A further 10 standard ewes whose interval from parturition was in excess of 150 days were included for comparative purposes. On Day 10 after insemination the pregnancy rate was determined in four ewes from each of the post-partum groups and five standard ewes. These ewes were then ovariectomized and hysterectomized for studies in vitro. The incidence of premature luteal regression, as assessed by progesterone concentrations in peripheral blood was independent of the suckling stimulus but dependent on stage post partum (21 days post partum, 6 of 19 ewes; 35 days post partum, 0 of 19 ewes; P less than 0.05). Luteal function was normal in all standard ewes. Ovulation rate, corpus luteum weight, corpus luteum progesterone content and basal progesterone production in vitro were significantly less in 21-day than in 35-day post-partum ewes. Pregnancy rates as determined on Day 10 or at term were low in all post-partum groups (7 out of the 38 ewes inseminated) compared with standard ewes (8 of 10). Uterine function was assessed by culturing endometrial tissue from the tip and body of each uterine horn in the presence of [3H]leucine for 30 h at 37 degrees C. Incorporation of radiolabel into non-dialysable proteins synthesized and secreted by the endometrium in vitro was independent of uterine horn location and suckling status but was significantly lower (P less than 0.001) in media from 21-day than from 35-day post-partum ewes. Irrespective of treatment group, incorporation of radiolabel was positively correlated with mean plasma progesterone concentrations on Days 2-10 after insemination and with basal progesterone production in vitro. Secreted proteins were detected by two-dimensional-polyacrylamide-gel electrophoresis and fluorography.(ABSTRACT TRUNCATED AT 400 WORDS)


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Jean-Philippe Sinnes ◽  
Ulrike Bauder-Wüst ◽  
Martin Schäfer ◽  
Euy Sung Moon ◽  
Klaus Kopka ◽  
...  

Abstract Background The AAZTA chelator and in particular its bifunctional derivative AAZTA5 was recently investigated to demonstrate unique capabilities to complex diagnostic and therapeutic trivalent radiometals under mild conditions. This study presents a comparison of 68Ga, 44Sc and 177Lu-labeled AAZTA5-PSMA-617 with DOTA-PSMA-617 analogues. We evaluated the radiolabeling characteristics, in vitro stability of the radiolabeled compounds and evaluated their binding affinity and internalization behavior on LNCaP tumor cells in direct comparison to the radiolabeled DOTA-conjugated PSMA-617 analogs. Results AAZTA5 was synthesized in a five-step synthesis and coupled to the PSMA-617 backbone on solid phase. Radiochemical evaluation of AAZTA5-PSMA-617 with 68Ga, 44Sc and 177Lu achieved quantitative radiolabeling of > 99% after less than 5 min at room temperature. Stabilities against human serum, PBS buffer and EDTA and DTPA solutions were analyzed. While there was a small degradation of the 68Ga complex over 2 h in human serum, PBS and EDTA/DTPA, the 44Sc and 177Lu complexes were stable at 2 h and remained stable over 8 h and 1 day. For all three compounds, i.e. [natGa]Ga-AAZTA5-PSMA-617, [natSc]Sc-AAZTA5-PSMA-617 and [natLu]Lu-AAZTA5-PSMA-617, in vitro studies on PSMA-positive LNCaP cells were performed in direct comparison to radiolabeled DOTA-PSMA-617 yielding the corresponding inhibition constants (Ki). Ki values were in the range of 8–31 nM values which correspond with those of [natGa]Ga-DOTA-PSMA-617, [natSc]Sc-DOTA-PSMA-617 and [natLu]Lu-DOTA-PSMA-617, i.e. 5–7 nM, respectively. Internalization studies demonstrated cellular membrane to internalization ratios for the radiolabeled 68Ga, 44Sc and 177Lu-AAZTA5-PSMA-617 tracers (13–20%IA/106 cells) in the same range as the ones of the three radiolabeled DOTA-PSMA-617 tracers (17–20%IA/106 cells) in the same assay. Conclusions The AAZTA5-PSMA-617 structure proved fast and quantitative radiolabeling with all three radiometal complexes at room temperature, excellent stability with 44Sc, very high stability with 177Lu and medium stability with 68Ga in human serum, PBS and EDTA/DTPA solutions. All three AAZTA5-PSMA-617 tracers showed binding affinities and internalization ratios in LNCaP cells comparable with that of radiolabeled DOTA-PSMA-617 analogues. Therefore, the exchange of the chelator DOTA with AAZTA5 within the PSMA-617 binding motif has no negative influence on in vitro LNCaP cell binding characteristics. In combination with the faster and milder radiolabeling features, AAZTA5-PSMA-617 thus demonstrates promising potential for in vivo application for theranostics of prostate cancer.


2004 ◽  
Vol 16 (2) ◽  
pp. 87 ◽  
Author(s):  
Le Ann Blomberg ◽  
Kurt A. Zuelke

Functional genomics provides a powerful means for delving into the molecular mechanisms involved in pre-implantation development of porcine embryos. High rates of embryonic mortality (30%), following either natural mating or artificial insemination, emphasise the need to improve the efficiency of reproduction in the pig. The poor success rate of live offspring from in vitro-manipulated pig embryos also hampers efforts to generate transgenic animals for biotechnology applications. Previous analysis of differential gene expression has demonstrated stage-specific gene expression for in vivo-derived embryos and altered gene expression for in vitro-derived embryos. However, the methods used to date examine relatively few genes simultaneously and, thus, provide an incomplete glimpse of the physiological role of these genes during embryogenesis. The present review will focus on two aspects of applying functional genomics research strategies for analysing the expression of genes during elongation of pig embryos between gestational day (D) 11 and D12. First, we compare and contrast current methodologies that are being used for gene discovery and expression analysis during pig embryo development. Second, we establish a paradigm for applying serial analysis of gene expression as a functional genomics tool to obtain preliminary information essential for discovering the physiological mechanisms by which distinct embryonic phenotypes are derived.


Reproduction ◽  
2012 ◽  
Vol 143 (2) ◽  
pp. 195-201 ◽  
Author(s):  
C Joy McIntosh ◽  
Steve Lawrence ◽  
Peter Smith ◽  
Jennifer L Juengel ◽  
Kenneth P McNatty

The transforming growth factor β (TGFB) superfamily proteins bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9), are essential for mammalian fertility. Recent in vitro evidence suggests that the proregions of mouse BMP15 and GDF9 interact with their mature proteins after secretion. In this study, we have actively immunized mice against these proregions to test the potential in vivo roles on fertility. Mice were immunized with either N- or C-terminus proregion peptides of BMP15 or GDF9, or a full-length GDF9 proregion protein, each conjugated to keyhole limpet hemocyanin (KLH). For each immunization group, ovaries were collected from ten mice for histology after immunization, while a further 20 mice were allowed to breed and litter sizes were counted. To link the ovulation and fertility data of these two experimental end points, mice were joined during the time period identified by histology as being the ovulatory period resulting in to the corpora lutea (CL) counted. Antibody titers in sera increased throughout the study period, with no cross-reactivity observed between BMP15 and GDF9 sera and antigens. Compared with KLH controls, mice immunized with the N-terminus BMP15 proregion peptide had ovaries with fewer CL (P<0.05) and produced smaller litters (P<0.05). In contrast, mice immunized with the full-length GDF9 proregion not only had more CL (P<0.01) but also had significantly smaller litter sizes (P<0.01). None of the treatments affected the number of antral follicles per ovary. These findings are consistent with the hypothesis that the proregions of BMP15 and GDF9, after secretion by the oocyte, have physiologically important roles in regulating ovulation rate and litter size in mice.


Zygote ◽  
2008 ◽  
Vol 16 (2) ◽  
pp. 169-177 ◽  
Author(s):  
Francesca Ciani ◽  
Natascia Cocchia ◽  
Maria Rizzo ◽  
Patrizia Ponzio ◽  
Gennaro Tortora ◽  
...  

SummarySex identification in mammalian preimplantation embryos is a technique that is used currently for development of the embryo transfer industry for zootechnical animals and is, therefore, a resource for biodiversity preservation. The aim of the present study was to establish a rapid and reliable method for the sexing of preimplantation embryos in domestic cats. Here we describe the use of nested PCR identify Y chromosome-linked markers when starting from small amounts of DNA and test the method for the purpose of sexing different species of wild felids. To evaluate the efficiency of the primers, PCR analysis were performed first in blood samples of sex-known domestic cats. Cat embryos were produced both in vitro and in vivo and the blastocysts were biopsied. A Magnetic Resin System was used to capture a consistent amount of DNA from embryo biopsy and wild felid hairs. The results from nested PCR applied on cat blood that corresponded to the phenotypical sex. Nested PCR was also applied to 37 embryo biopsies and the final result was: 21 males and 16 females. Furthermore, β-actin was amplified in each sample, as a positive control for DNA presence. Subsequently, nested PCR was performed on blood and hair samples from some wild felines and again the genotyping results and phenotype sex corresponded. The data show that this method is a rapid and repeatable option for sex determination in domestic cat embryos and some wild felids and that a small amount of cells is sufficient to obtain a reliable result. This technique, therefore, affords investigators a new approach that they can insert in the safeguard programmes of felida biodiversity.


Zygote ◽  
2021 ◽  
pp. 1-7
Author(s):  
Maryam Mahaldashtian ◽  
Mohammad Ali Khalili ◽  
Fatemeh Anbari ◽  
Mohammad Seify ◽  
Manuel Belli

Summary Cell phones operate with a wide range of frequency bands and emit radiofrequency-electromagnetic radiation (RF-EMR). Concern on the possible health hazards of RF-EMR has been growing in many countries because these RF-EMR pulses may be absorbed into the body cells, directly affecting them. There are some in vitro and in vivo animal studies related to the consequences of RF-EMR exposure from cell phones on embryo development and offspring. In addition, some studies have revealed that RF-EMR from cellular phone may lead to decrease in the rates of fertilization and embryo development, as well as the risk of the developmental anomalies, other studies have reported that it does not interfere with in vitro fertilization or intracytoplasmic sperm injection success rates, or the chromosomal aberration rate. Of course, it is unethical to study the effect of waves generated from cell phones on the forming human embryos. Conversely, other mammals have many similarities to humans in terms of anatomy, physiology and genetics. Therefore, in this review we focused on the existing literature evaluating the potential effects of RF-EMR on mammalian embryonic and fetal development.


Animals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 561 ◽  
Author(s):  
Abdelnour ◽  
El-Hack ◽  
Swelum ◽  
Saadeldin ◽  
Noreldin ◽  
...  

Retinoic acid (RA) is an indigenous metabolite and descriptive physiologically functioning constituent of vitamin A. Retinoids were documented as vital regulators for cell development and distinction, embryonic growth, and reproductive function in both male and female livestock. Previously, RA has been shown to have several positive impacts in vivo and in vitro and critically control many reproductive events, such as oocyte development, follicular growth, and early embryonic growth. In addition, RA manages apoptotic signaling and oxidative damages in cells. Recently, RA has been used widely in assisted reproductive technology fields, especially during in vitro embryo development in various mammalian species, including buffaloes, bovine, goats, sheep, pigs, and rabbits. However, the optimum concentration of RA greatly differs based on the condition of maturation media and species. Based on the obtained findings, it was generally accepted that RA enhances nuclear oocyte maturation, cleavage and maturation rates, blastocyst formation, and embryo development. As such, it possesses antioxidant properties against reactive oxygen species (ROS) and an anti-apoptotic effect through enhancing the transcription of some related genes such as superoxide dismutase, prostaglandin synthase, glutathione peroxidase, peroxiredoxins, and heme oxygenase. Therefore, the current review concludes that an addition of RA (up to 50 nM) has the potential to improve the oocyte maturation media of various species of livestock due to its antioxidant activity.


Reproduction ◽  
2010 ◽  
Vol 139 (3) ◽  
pp. 587-598 ◽  
Author(s):  
Samu Myllymaa ◽  
Arja Pasternack ◽  
David G Mottershead ◽  
Matti Poutanen ◽  
Minna M Pulkki ◽  
...  

Growth differentiation factor-9 (GDF9) and bone morphogenetic protein-15 (BMP15) are among the key regulators transmitting the signaling between the oocyte and the surrounding granulosa cells. Previously, it has been shown that a recombinant BMP type II receptor ectodomain–Fc fusion protein (BMPR2ecd–Fc) is able to inhibit the actions of GDF9 and BMP15 in vitro. Here, we have produced bioactive BMPR2ecd–Fc, which was injected i.p. into neonatal mice. Early folliculogenesis was first studied by injecting mice five times with various doses of BMPR2ecd–Fc during the postnatal days 4–12. Folliculogenesis was affected dose dependently, as evidenced by a decreased mitogenesis of granulosa cells of the growing follicles. Furthermore, we also noticed a decrease in the number of secondary and tertiary follicles as well as an increase in the oocyte size. Electron microscopic analysis revealed that the ultrastructure of the granulosa cells of the primary follicles was not affected by the BMPR2ecd–Fc treatment. A second study was conducted to investigate whether a longer treatment with 12 injections during postnatal days 4–28 would inhibit folliculogenesis. Similar effects were observed in the two studies on the early follicular developmental stages. However, in the long-term study, later stages of folliculogenesis were not blocked but rather increased numbers of antral follicles, preovulatory follicles, and corpora lutea were found. We conclude that BMPR2ecd–Fc is a potent modulator of ovarian folliculogenesis in vivo, and thus, is a valuable tool for studying the physiology and downstream effects of oocyte-derived growth factors in vivo.


Reproduction ◽  
2001 ◽  
pp. 51-75 ◽  
Author(s):  
A Trounson ◽  
C Anderiesz ◽  
G Jones

Complete maturation of oocytes is essential for the developmental competence of embryos. Any interventions in the growth phase of the oocyte and the follicle in the ovary will affect oocyte maturation, fertilization and subsequent embryo development. Oocyte size is associated with maturation and embryo development in most species examined and this may indicate that a certain size is necessary to initiate the molecular cascade of normal nuclear and cytoplasmic maturation. The minimum size of follicle required for developmental competence in humans is 5-7 mm in diameter. Maturation in vitro can be accomplished in humans, but is associated with a loss of developmental competence unless the oocyte is near completion of its preovulatory growth phase. This loss of developmental competence is associated with the absence of specific proteins in oocytes cultured to metaphase II in vitro. The composition of culture medium used successfully for maturation of human oocytes is surprisingly similar to that originally developed for maturation of oocytes in follicle culture in vitro. The presence of follicle support cells in culture is necessary for the gonadotrophin-mediated response required to mature oocytes in vitro. Gonadotrophin concentration and the sequence of FSH and FSH-LH exposure may be important for human oocytes, particularly those not exposed to the gonadotrophin surge in vivo. More research is needed to describe the molecular and cellular events, the presence of checkpoints and the role of gene expression, translation and protein uptake on completing oocyte maturation in vitro and in vivo. In the meantime, there are very clear applications for maturing oocytes in human reproductive medicine and the success rates achieved in some of these special applications are clinically valuable.


2008 ◽  
Vol 20 (1) ◽  
pp. 118 ◽  
Author(s):  
M. C. Gómez ◽  
N. Kagawa ◽  
C. E. Pope ◽  
M. Kuwayama ◽  
S. P. Leibo ◽  
...  

The ability to cryopreserve female gametes efficiently holds immense economic and genetic implications. The purpose of the present project was to determine if domestic cat oocytes could be cryopreserved successfully by use of the Cryotop method. We evaluated (a) cleavage frequency after in vitro fertilization (IVF) v. intracytoplasmic sperm injection (ICSI) of in vivo- and in vitro-matured oocytes after vitrification, and (b) fetal development after transfer of resultant embryos into recipients. In vivo-matured cumulus–oocyte complexes (COCs) were recovered from gonadotropin-treated donors at 24 h after LH treatment, denuded of cumulus cells, and examined for the presence of the first polar body (PB). In vitro-matured COCs were obtained from ovaries donated by local clinics and placed into maturation medium for 24 h before cumulus cells were removed and PB status was determined. Oocytes were cryopreserved by the Cryotop method (Kuwayama et al. 2005 Reprod. Biomed. Online 11, 608–614) in a vitrification solution consisting of 15% DMSO, 15% ethylene glycol, and 18% sucrose. For IVF, oocytes were co-incubated with 1 � 106 motile spermatozoa mL–1 in droplets of modified Tyrode's medium in 5% CO2/air at 38�C (Pope et al. 2006 Theriogenology 66, 59–71). For ICSI, an immobilized spermatozoon was loaded into the injection pipette, which was then pushed through the zona pellucida into the ooplasm. After a minimal amount of ooplasm was aspirated into the pipette, the spermatozoon was carefully expelled, along with the aspirated ooplasm. After ICSI, or at 5 or 18 h post-insemination, in vivo- and in vitro-matured oocytes, respectively, were rinsed and placed in IVC-1 medium (Pope et al. 2006). As assessed by normal morphological appearance after liquefaction, the survival rate of both in vivo- and in vitro-matured oocytes was >90% (93–97%). For in vitro-matured oocytes, cleavage frequencies after IVF of control and vitrified oocytes were 73% (16/22) and 53% (30/57), respectively, as compared to 68% (19/28) after ICSI of vitrified oocytes (P > 0.05). For in vivo-matured oocytes, cleavage frequencies after IVF of control and vitrified oocytes were 55% (18/33) and 35% (6/17), respectively, compared to 50% (10/20) after ICSI of vitrified oocytes (P > 0.05). At 18–20 h after ICSI, 18 presumptive zygotes and four 2-cell embryos derived from vitrified in vitro-matured oocytes and 19 presumptive zygotes produced from seven in vivo-matured and 12 in vitro-matured vitrified oocytes were transferred by laparoscopy into the oviducts of two recipients at 24–26 h after oocyte retrieval. The two recipients were 9-month-old IVF/ET-derived females produced with X-sperm sorted by flow cytometry. At ultrasonography on Day 22, both recipients were pregnant, with three live fetuses observed in one recipient and one live fetus seen in the second recipient. On Day 63 and Day 66 of gestation, four live kittens were born, without assistance, to the two recipients. The one male and three female kittens weighed an average of 131 g. In summary, in vivo viability of zygotes/embryos produced by ICSI of cat oocytes vitrified by the Cryotop method was demonstrated by the birth of live kittens following transfer to recipients.


Sign in / Sign up

Export Citation Format

Share Document