scholarly journals Spatially resolved metabolomics to discover tumor-associated metabolic alterations

2018 ◽  
Vol 116 (1) ◽  
pp. 52-57 ◽  
Author(s):  
Chenglong Sun ◽  
Tiegang Li ◽  
Xiaowei Song ◽  
Luojiao Huang ◽  
Qingce Zang ◽  
...  

Characterization of tumor metabolism with spatial information contributes to our understanding of complex cancer metabolic reprogramming, facilitating the discovery of potential metabolic vulnerabilities that might be targeted for tumor therapy. However, given the metabolic variability and flexibility of tumors, it is still challenging to characterize global metabolic alterations in heterogeneous cancer. Here, we propose a spatially resolved metabolomics approach to discover tumor-associated metabolites and metabolic enzymes directly in their native state. A variety of metabolites localized in different metabolic pathways were mapped by airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) in tissues from 256 esophageal cancer patients. In combination with in situ metabolomics analysis, this method provided clues into tumor-associated metabolic pathways, including proline biosynthesis, glutamine metabolism, uridine metabolism, histidine metabolism, fatty acid biosynthesis, and polyamine biosynthesis. Six abnormally expressed metabolic enzymes that are closely associated with the altered metabolic pathways were further discovered in esophageal squamous cell carcinoma (ESCC). Notably, pyrroline-5-carboxylate reductase 2 (PYCR2) and uridine phosphorylase 1 (UPase1) were found to be altered in ESCC. The spatially resolved metabolomics reveal what occurs in cancer at the molecular level, from metabolites to enzymes, and thus provide insights into the understanding of cancer metabolic reprogramming.

Cancers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 447 ◽  
Author(s):  
Hayato Nakagawa ◽  
Yuki Hayata ◽  
Satoshi Kawamura ◽  
Tomoharu Yamada ◽  
Naoto Fujiwara ◽  
...  

Metabolic reprogramming for adaptation to the local environment has been recognized as a hallmark of cancer. Although alterations in fatty acid (FA) metabolism in cancer cells have received less attention compared to other metabolic alterations such as glucose or glutamine metabolism, recent studies have uncovered the importance of lipid metabolic reprogramming in carcinogenesis. Obesity and nonalcoholic steatohepatitis (NASH) are well-known risk factors of hepatocellular carcinoma (HCC), and individuals with these conditions exhibit an increased intake of dietary FAs accompanied by enhanced lipolysis of visceral adipose tissue due to insulin resistance, resulting in enormous exogenous FA supplies to hepatocytes via the portal vein and lymph vessels. This “lipid-rich condition” is highly characteristic of obesity- and NASH-driven HCC. Although the way in which HCC cells adapt to such a condition and exploit it to aid their progression is not understood, we recently obtained new insights into this mechanism through lipid metabolic reprogramming. In addition, accumulating evidence supports the importance of lipid metabolic reprogramming in various situations of hepatocarcinogenesis. Thus, in this review, we discuss the latest findings regarding the role of FA metabolism pathways in hepatocarcinogenesis, focusing on obesity- and NASH-driven lipid metabolic reprogramming.


2020 ◽  
Vol 27 (32) ◽  
pp. 5317-5339 ◽  
Author(s):  
José M. Matés ◽  
José A. Campos-Sandoval ◽  
Juan de los Santos-Jiménez ◽  
Juan A. Segura ◽  
Francisco J. Alonso ◽  
...  

Background: Metabolic reprogramming of tumours is a hallmark of cancer. Among the changes in the metabolic network of cancer cells, glutaminolysis is a key reaction altered in neoplasms. Glutaminase proteins control the first step in glutamine metabolism and their expression correlates with malignancy and growth rate of a great variety of cancers. The two types of glutaminase isoenzymes, GLS and GLS2, differ in their expression patterns and functional roles: GLS has oncogenic properties and GLS2 has been described as a tumour suppressor factor. Results: We have focused on glutaminase connections with key oncogenes and tumour suppressor genes. Targeting glutaminase isoenzymes includes different strategies aimed at deactivating the rewiring of cancer metabolism. In addition, we found a long list of metabolic enzymes, transcription factors and signalling pathways dealing with glutaminase. On the other hand, a number of chemicals have been described as isoenzyme-specific inhibitors of GLS and/or GLS2 isoforms. These molecules are being characterized as synergic and therapeutic agents in many types of tumours. Conclusion: This review states the metabolic pathways that are rewired in cancer, the roles of glutaminase isoforms in cancer, as well as the metabolic circuits regulated by glutaminases. We also show the plethora of anticancer drugs that specifically inhibit glutaminase isoenzymes for treating several sets of cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bai Linnan ◽  
Wang Yanzhe ◽  
Zhang Ling ◽  
Liu Yuyuan ◽  
Chen Sijia ◽  
...  

The in situ metabolic profiling of the kidney is crucial to investigate the complex metabolic reprogramming underlying diabetic kidney disease (DKD) and to allow exploration of potential metabolic targets to improve kidney function. However, as the kidney is a highly heterogeneous organ, traditional metabolomic methods based on bulk analysis that produce an averaged measurement are inadequate. Herein, we employed an in situ metabolomics approach to discover alternations of DKD-associated metabolites and metabolic pathways. A series of histology-specific metabolic disturbances were discovered in situ using airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI–MSI). In combination with integrated metabolomics analysis, five dysfunctional metabolic pathways were identified and located in the kidneys of type-2 DKD mice simultaneously for the first time, including taurine metabolism, arginine and proline metabolism, histidine metabolism, biosynthesis of unsaturated fatty acids, and fatty acid degradation pathways. As crucial nodes of metabolic pathways, five dysregulated rate-limiting enzymes related to altered metabolic pathways were further identified. These findings reveal alternations from metabolites to enzymes at the molecular level in the progression of DKD and provide insights into DKD-associated metabolic reprogramming.


2019 ◽  
Vol 116 (52) ◽  
pp. 26625-26632 ◽  
Author(s):  
Kai Su Greene ◽  
Michael J. Lukey ◽  
Xueying Wang ◽  
Bryant Blank ◽  
Joseph E. Druso ◽  
...  

The mitochondrial enzyme glutaminase (GLS) is frequently up-regulated during tumorigenesis and is being evaluated as a target for cancer therapy. GLS catalyzes the hydrolysis of glutamine to glutamate, which then supplies diverse metabolic pathways with carbon and/or nitrogen. Here, we report that SIRT5, a mitochondrial NAD+-dependent lysine deacylase, plays a key role in stabilizing GLS. In transformed cells, SIRT5 regulates glutamine metabolism by desuccinylating GLS and thereby protecting it from ubiquitin-mediated degradation. Moreover, we show that SIRT5 is up-regulated during cellular transformation and supports proliferation and tumorigenesis. Elevated SIRT5 expression in human breast tumors correlates with poor patient prognosis. These findings reveal a mechanism for increasing GLS expression in cancer cells and establish a role for SIRT5 in metabolic reprogramming and mammary tumorigenesis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Guofeng Ma ◽  
Chun Li ◽  
Zhilei Zhang ◽  
Ye Liang ◽  
Zhijuan Liang ◽  
...  

Immunotherapy, especially PD-1/PD-L1 checkpoint blockade immunotherapy, has led tumor therapy into a new era. However, the vast majority of patients do not benefit from immunotherapy. One possible reason for this lack of response is that the association between tumors, immune cells and metabolic reprogramming in the tumor microenvironment affect tumor immune escape. Generally, the limited amount of metabolites in the tumor microenvironment leads to nutritional competition between tumors and immune cells. Metabolism regulates tumor cell expression of PD-L1, and the PD-1/PD-L1 immune checkpoint regulates the metabolism of tumor and T cells, which suggests that targeted tumor metabolism may have a synergistic therapeutic effect together with immunotherapy. However, the targeting of different metabolic pathways in different tumors may have different effects on tumor immune escape. Herein, we discuss the influence of glucose metabolism and glutamine metabolism on tumor immune escape and describe the theoretical basis for strategies targeting glucose or glutamine metabolism in combination with PD-1/PD-L1 checkpoint blockade immunotherapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lei Xia ◽  
Hairong Zhang ◽  
Xuezhen Wang ◽  
Xiaoyu Zhang ◽  
Ke Nie

Ovarian cancer is one of the most common malignancies and the highest mortality among gynecological malignancy. The standard therapy options for patients with ovarian cancer are cytoreductive surgery and chemotherapy, and although most patients do better with standard treatment, it is easy to relapse and be resistant to chemotherapy. Therefore, it is important to find new therapeutic strategies. More recently, metabolic reprogramming has been recognized as a hallmark of cancer and has become a potential target for tumor therapy. Mutations of metabolic enzymes are closely related to the development of ovarian cancer. The metabolic reprogramming of ovarian cancer not only provides energy to tumor cells, but also participates in various biological processes as signaling molecules. Succinic acid (SA) is an important metabolic intermediate involved in a number of metabolic pathways, such as TCA cycle and glutamine metabolism, and is also widely present in a variety of plants and vegetables. Studies show abnormal SA metabolism in many tumors and affect tumor formation through a variety of mechanisms. But the role of SA in ovarian cancer is less studied. This paper reviews the role of SA and its abnormal metabolic pathway in ovarian cancer.


2021 ◽  
Vol 11 (3) ◽  
pp. 1259
Author(s):  
Qiong Wu ◽  
Bo Zhao ◽  
Guangchao Sui ◽  
Jinming Shi

Aberrant metabolism is one of the hallmarks of cancers. The contributions of dysregulated metabolism to cancer development, such as tumor cell survival, metastasis and drug resistance, have been extensively characterized. “Reprogrammed” metabolic pathways in cancer cells are mainly represented by excessive glucose consumption and hyperactive de novo lipogenesis. Natural compounds with anticancer activities are constantly being demonstrated to target metabolic processes, such as glucose transport, aerobic glycolysis, fatty acid synthesis and desaturation. However, their molecular targets and underlying anticancer mechanisms remain largely unclear or controversial. Mounting evidence indicated that these natural compounds could modulate the expression of key regulatory enzymes in various metabolic pathways at transcriptional and translational levels. Meanwhile, natural compounds could also inhibit the activities of these enzymes by acting as substrate analogs or altering their protein conformations. The actions of natural compounds in the crosstalk between metabolism modulation and cancer cell destiny have become increasingly attractive. In this review, we summarize the activities of natural small molecules in inhibiting key enzymes of metabolic pathways. We illustrate the structural characteristics of these compounds at the molecular level as either inhibitor of various enzymes or regulators of metabolic pathways in cancer cells. Our ultimate goal is to both facilitate the clinical application of natural compounds in cancer therapies and promote the development of novel anticancer therapeutics.


2021 ◽  
Author(s):  
Linchong Sun ◽  
Huafeng Zhang ◽  
Ping Gao

AbstractMetabolic rewiring and epigenetic remodeling, which are closely linked and reciprocally regulate each other, are among the well-known cancer hallmarks. Recent evidence suggests that many metabolites serve as substrates or cofactors of chromatin-modifying enzymes as a consequence of the translocation or spatial regionalization of enzymes or metabolites. Various metabolic alterations and epigenetic modifications also reportedly drive immune escape or impede immunosurveillance within certain contexts, playing important roles in tumor progression. In this review, we focus on how metabolic reprogramming of tumor cells and immune cells reshapes epigenetic alterations, in particular the acetylation and methylation of histone proteins and DNA. We also discuss other eminent metabolic modifications such as, succinylation, hydroxybutyrylation, and lactylation, and update the current advances in metabolism- and epigenetic modification-based therapeutic prospects in cancer.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3485
Author(s):  
Assunta Sellitto ◽  
Giovanni Pecoraro ◽  
Giorgio Giurato ◽  
Giovanni Nassa ◽  
Francesca Rizzo ◽  
...  

Metabolic reprogramming is a well described hallmark of cancer. Oncogenic stimuli and the microenvironment shape the metabolic phenotype of cancer cells, causing pathological modifications of carbohydrate, amino acid and lipid metabolism that support the uncontrolled growth and proliferation of cancer cells. Conversely, metabolic alterations in cancer can drive changes in genetic programs affecting cell proliferation and differentiation. In recent years, the role of non-coding RNAs in metabolic reprogramming in cancer has been extensively studied. Here, we review this topic, with a focus on glucose, glutamine, and lipid metabolism and point to some evidence that metabolic alterations occurring in cancer can drive changes in non-coding RNA expression, thus adding an additional level of complexity in the relationship between metabolism and genetic programs in cancer cells.


Sign in / Sign up

Export Citation Format

Share Document