scholarly journals Additive manufacturing of patterned 2D semiconductor through recyclable masked growth

2019 ◽  
Vol 116 (9) ◽  
pp. 3437-3442 ◽  
Author(s):  
Yunfan Guo ◽  
Pin-Chun Shen ◽  
Cong Su ◽  
Ang-Yu Lu ◽  
Marek Hempel ◽  
...  

The 2D van der Waals crystals have shown great promise as potential future electronic materials due to their atomically thin and smooth nature, highly tailorable electronic structure, and mass production compatibility through chemical synthesis. Electronic devices, such as field effect transistors (FETs), from these materials require patterning and fabrication into desired structures. Specifically, the scale up and future development of “2D”-based electronics will inevitably require large numbers of fabrication steps in the patterning of 2D semiconductors, such as transition metal dichalcogenides (TMDs). This is currently carried out via multiple steps of lithography, etching, and transfer. As 2D devices become more complex (e.g., numerous 2D materials, more layers, specific shapes, etc.), the patterning steps can become economically costly and time consuming. Here, we developed a method to directly synthesize a 2D semiconductor, monolayer molybdenum disulfide (MoS2), in arbitrary patterns on insulating SiO2/Si via seed-promoted chemical vapor deposition (CVD) and substrate engineering. This method shows the potential of using the prepatterned substrates as a master template for the repeated growth of monolayer MoS2 patterns. Our technique currently produces arbitrary monolayer MoS2 patterns at a spatial resolution of 2 μm with excellent homogeneity and transistor performance (room temperature electron mobility of 30 cm2 V−1 s−1 and on–off current ratio of 107). Extending this patterning method to other 2D materials can provide a facile method for the repeatable direct synthesis of 2D materials for future electronics and optoelectronics.

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Daniil Marinov ◽  
Jean-François de Marneffe ◽  
Quentin Smets ◽  
Goutham Arutchelvan ◽  
Kristof M. Bal ◽  
...  

AbstractThe cleaning of two-dimensional (2D) materials is an essential step in the fabrication of future devices, leveraging their unique physical, optical, and chemical properties. Part of these emerging 2D materials are transition metal dichalcogenides (TMDs). So far there is limited understanding of the cleaning of “monolayer” TMD materials. In this study, we report on the use of downstream H2 plasma to clean the surface of monolayer WS2 grown by MOCVD. We demonstrate that high-temperature processing is essential, allowing to maximize the removal rate of polymers and to mitigate damage caused to the WS2 in the form of sulfur vacancies. We show that low temperature in situ carbonyl sulfide (OCS) soak is an efficient way to resulfurize the material, besides high-temperature H2S annealing. The cleaning processes and mechanisms elucidated in this work are tested on back-gated field-effect transistors, confirming that transport properties of WS2 devices can be maintained by the combination of H2 plasma cleaning and OCS restoration. The low-damage plasma cleaning based on H2 and OCS is very reproducible, fast (completed in a few minutes) and uses a 300 mm industrial plasma etch system qualified for standard semiconductor pilot production. This process is, therefore, expected to enable the industrial scale-up of 2D-based devices, co-integrated with silicon technology.


2020 ◽  
Vol 15 (6) ◽  
pp. 673-678
Author(s):  
Soo-Young Kang ◽  
Gil-Sung Kim ◽  
Min-Sung Kang ◽  
Won-Yong Lee ◽  
No-Won Park ◽  
...  

Transition metal dichalcogenides (TMDs) are layered two-dimensional (2D) semiconductors and have received significant attention for their potential application in field effect transistors (FETs), owing to their inherent characteristics. Among the various reported 2D TMD materials, monolayer (ML) molybdenum disulfide (MoS2) is being considered as a promising channel material for the fabrication of future transistors with gate lengths as small as ∼1 nm. In this work, we present chemical vapor deposition-grown triangular ML MoS2 with a lateral size of ∼22 μm and surface coverage of ∼47%, as well as a PMMA-based wet transfer process for depositing the as-grown triangular ML MoS2 flakes onto a SiO2 (∼100 nm)/p++-Si substrate. Additionally, we demonstrate the fabrication of an n-type MoS2-based FET device and study its electrical characteristics as a function of the gate voltage. Our FET device shows an excellent on/off ratio of ∼106, an off-state leakage current of less than 10– 12 A, and a field effect mobility of ∼10.4 cm2/Vs at 300 K.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4811 ◽  
Author(s):  
Mohammed Sedki ◽  
Ying Chen ◽  
Ashok Mulchandani

In recent years, field-effect transistors (FETs) have been very promising for biosensor applications due to their high sensitivity, real-time applicability, scalability, and prospect of integrating measurement system on a chip. Non-carbon 2D materials, such as transition metal dichalcogenides (TMDCs), hexagonal boron nitride (h-BN), black phosphorus (BP), and metal oxides, are a group of new materials that have a huge potential in FET biosensor applications. In this work, we review the recent advances and remarkable studies of non-carbon 2D materials, in terms of their structures, preparations, properties and FET biosensor applications. We will also discuss the challenges facing non-carbon 2D materials-FET biosensors and their future perspectives.


MRS Advances ◽  
2016 ◽  
Vol 1 (32) ◽  
pp. 2291-2296 ◽  
Author(s):  
Gustavo A. Lara Saenz ◽  
Chandan Biswas ◽  
Hisato Yamaguchi ◽  
Claudia Narvaez Villarrubia ◽  
Aditya D. Mohite ◽  
...  

ABSTRACTSince the isolation of graphene, a monolayer of sp2-bonded carbon atoms arranged in a hexagonal lattice, two-dimensional (2D) layered materials have attracted a great deal of attention due to their outstanding mechanical, optical and electronic properties. The research areas of interest for these new materials include exploring their novel properties, developing scalable approaches to synthesize these materials, and integrating them into a new generation of nanodevices. The utilization of 2D materials in devices has many advantages, which includes scaled materials to the limit of atomic-scale membranes, and the potential to form device structures on flexible and transparent substrates, among others. Transition metal dichalcogenides (TMDs) monolayers in particular, have received increasing attention in recent years, especially molybdenum disulfide (MoS2), which is one of the most well explored semiconducting materials in the 2D materials system. In this work we present the synthesis of MoS2 using chemical vapor deposition (CVD), where we have varied the synthesis parameters and compared the structure and quality of the CVD synthesized MoS2. At the same time, we have compared the characteristics with those obtained for mechanically exfoliated flakes from the bulk MoS2 crystal. The MoS2 quality has been analyzed using Raman spectroscopy.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Yumeng Shi ◽  
Henan Li ◽  
Jen It Wong ◽  
Xiaoting Zhang ◽  
Ye Wang ◽  
...  

Abstract Atomically thin semiconducting transition-metal dichalcogenides have been attracting lots of attentions, particularly, molybdenum disulfide (MoS2) monolayers show promising applications in field effect transistors, optoelectronics and valleytronics. However, the controlled synthesis of highly crystalline MoS2 remain a challenge especially the systematic approach to manipulate its structure and morphology. Herein, we report a method for controlled synthesis of highly crystalline MoS2 by using chemical vapor deposition method with carbonaceous materials as growth promoter. A uniform and highly crystalline MoS2 monolayer with the grain size close to 40 μm was achieved. Furthermore, we extend the method to the manipulation of MoS2 morphology, flower-shape vertical grown MoS2 layers were obtained on growth promoting substrates. This simple approach allows an easy access of highly crystalline MoS2 layers with morphology tuned in a controllable manner. Moreover, the flower-shape MoS2 grown on graphene oxide film used as an anode material for lithium-ion batteries showed excellent electrochemical performance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Xu ◽  
Jianfeng Mao ◽  
Xuyun Guo ◽  
Shanru Yan ◽  
Yancong Chen ◽  
...  

AbstractTwo-dimensional (2D) materials exhibit remarkable mechanical properties, enabling their applications as flexible and stretchable ultrathin devices. As the origin of several extraordinary mechanical behaviors, ferroelasticity has also been predicted theoretically in 2D materials, but so far lacks experimental validation and investigation. Here, we present the experimental demonstration of 2D ferroelasticity in both exfoliated and chemical-vapor-deposited β’-In2Se3 down to few-layer thickness. We identify quantitatively 2D spontaneous strain originating from in-plane antiferroelectric distortion, using both atomic-resolution electron microscopy and in situ X-ray diffraction. The symmetry-equivalent strain orientations give rise to three domain variants separated by 60° and 120° domain walls (DWs). Mechanical switching between these ferroelastic domains is achieved under ≤0.5% external strain, demonstrating the feasibility to tailor the antiferroelectric polar structure as well as DW patterns through mechanical stimuli. The detailed domain switching mechanism through both DW propagation and domain nucleation is unraveled, and the effects of 3D stacking on such 2D ferroelasticity are also discussed. The observed 2D ferroelasticity here should be widely available in 2D materials with anisotropic lattice distortion, including the 1T’ transition metal dichalcogenides with Peierls distortion and 2D ferroelectrics such as the SnTe family, rendering tantalizing potential to tune 2D functionalities through strain or DW engineering.


2021 ◽  
Vol 3 (1) ◽  
pp. 272-278
Author(s):  
Pilar G. Vianna ◽  
Aline dos S. Almeida ◽  
Rodrigo M. Gerosa ◽  
Dario A. Bahamon ◽  
Christiano J. S. de Matos

The scheme illustrates a monolayer transition-metal dichalcogenide on an epsilon-near-zero substrate. The substrate near-zero dielectric constant is used as the enhancement mechanism to maximize the SHG nonlinear effect on monolayer 2D materials.


Author(s):  
Sai Manoj Gali ◽  
David Beljonne

Transition Metal Dichalcogenides (TMDCs) are emerging as promising two-dimensional (2D) materials. Yet, TMDCs are prone to inherent defects such as chalcogen vacancies, which are detrimental to charge transport. Passivation of...


2021 ◽  
Vol 7 (9) ◽  
pp. eabd9061
Author(s):  
Shuai Fu ◽  
Indy du Fossé ◽  
Xiaoyu Jia ◽  
Jingyin Xu ◽  
Xiaoqing Yu ◽  
...  

Van der Waals heterostructures consisting of graphene and transition metal dichalcogenides have shown great promise for optoelectronic applications. However, an in-depth understanding of the critical processes for device operation, namely, interfacial charge transfer (CT) and recombination, has so far remained elusive. Here, we investigate these processes in graphene-WS2 heterostructures by complementarily probing the ultrafast terahertz photoconductivity in graphene and the transient absorption dynamics in WS2 following photoexcitation. We observe that separated charges in the heterostructure following CT live extremely long: beyond 1 ns, in contrast to ~1 ps charge separation reported in previous studies. This leads to efficient photogating of graphene. Furthermore, for the CT process across graphene-WS2 interfaces, we find that it occurs via photo-thermionic emission for sub-A-exciton excitations and direct hole transfer from WS2 to the valence band of graphene for above-A-exciton excitations. These findings provide insights to further optimize the performance of optoelectronic devices, in particular photodetection.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 601
Author(s):  
Dinh-Tuan Nguyen ◽  
Hsiang-An Ting ◽  
Yen-Hsun Su ◽  
Mario Hofmann ◽  
Ya-Ping Hsieh

The success of van-der-Waals electronics, which combine large-scale-deposition capabilities with high device performance, relies on the efficient production of suitable 2D materials. Shear exfoliation of 2D materials’ flakes from bulk sources can generate 2D materials with low amounts of defects, but the production yield has been limited below industry requirements. Here, we introduce additive-assisted exfoliation (AAE) as an approach to significantly increase the efficiency of shear exfoliation and produce an exfoliation yield of 30%. By introducing micrometer-sized particles that do not exfoliate, the gap between rotor and stator was dynamically reduced to increase the achievable shear rate. This enhancement was applied to WS2 and MoS2 production, which represent two of the most promising 2D transition-metal dichalcogenides. Spectroscopic characterization and cascade centrifugation reveal a consistent and significant increase in 2D material concentrations across all thickness ranges. Thus, the produced WS2 films exhibit high thickness uniformity in the nanometer-scale and can open up new routes for 2D materials production towards future applications.


Sign in / Sign up

Export Citation Format

Share Document