scholarly journals Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate

2019 ◽  
Vol 116 (9) ◽  
pp. 3494-3501 ◽  
Author(s):  
Donghai Mao ◽  
Yeyun Xin ◽  
Yongjun Tan ◽  
Xiaojie Hu ◽  
Jiaojiao Bai ◽  
...  

Rice (Oryza sativa L.) is a chilling-sensitive staple crop that originated in subtropical regions of Asia. Introduction of the chilling tolerance trait enables the expansion of rice cultivation to temperate regions. Here we report the cloning and characterization of HAN1, a quantitative trait locus (QTL) that confers chilling tolerance on temperate japonica rice. HAN1 encodes an oxidase that catalyzes the conversion of biologically active jasmonoyl-L-isoleucine (JA-Ile) to the inactive form 12-hydroxy-JA-Ile (12OH-JA-Ile) and fine-tunes the JA-mediated chilling response. Natural variants in HAN1 diverged between indica and japonica rice during domestication. A specific allele from temperate japonica rice, which gained a putative MYB cis-element in the promoter of HAN1 during the divergence of the two japonica ecotypes, enhances the chilling tolerance of temperate japonica rice and allows it to adapt to a temperate climate. The results of this study extend our understanding of the northward expansion of rice cultivation and provide a target gene for the improvement of chilling tolerance in rice.

2020 ◽  
Vol 61 (1) ◽  
Author(s):  
Xiangli Sun ◽  
Zebin Yuan ◽  
Bo Wang ◽  
Liping Zheng ◽  
Jianzhong Tan ◽  
...  

Abstract Background Chilling stress is the major factor limiting plant productivity and quality in most regions of the world. In the present study, we aimed to evaluate the effects of putrescine (Put) and polyamine inhibitor d-arginine (d-arg) on the chilling tolerance of anthurium (Anthurium andraeanum). Results Anthurium seedlings were pretreated with five different concentrations of Put solution or d-arg solution. Subsequently, the seedlings were subjected to chilling stress at 6 °C for 3 days, followed by a recovery at 25 °C for 1 day. Relative permeability of the plasma membrane, as well as physiological and morphologic parameters was assessed during the experiments. Additionally, transcriptome sequencing and patterns of differential gene expression related to chilling response were analyzed by qRT-PCR in 1.0 mM Put-treated and untreated anthurium seedlings. Results indicated that the supplementation of exogenous Put decreased the extent of membrane lipid peroxidation and the accumulation of malondialdehyde (MDA), promoted the antioxidant activities and proline content and maintained the morphologic performances compared with the control group. This finding indicated that the application of exogenous Put could effectively decrease the injury and maintain the quality of anthurium under chilling conditions. In contrast, the treatment of d-arg exhibited the opposite effects, which confirmed the effects of Put. Conclusions This research provided a possible approach to enhance the chilling tolerance of anthurium and reduce the energy consumption used in anthurium production.


Botany ◽  
2012 ◽  
Vol 90 (9) ◽  
pp. 845-855 ◽  
Author(s):  
Yang Wang ◽  
Jin Hu ◽  
Guochen Qin ◽  
Huawei Cui ◽  
Qitian Wang

One kind of biologically active salicylic acid (SA) analogue (acetylsalicylic acid, ASA) and two inactive compounds (4-aminosalicylic acid and 4-aminobenzoic acid), along with SA were chosen to evaluate their role in inducing chilling tolerance of two different chilling-tolerant maize ( Zea mays L.) inbred lines. These compounds were applied as seed treatments or as a hydroponic application. The results showed that four compounds had no significant effect on germination of maize seeds; however, SA or ASA soaking treatments significantly increased the root length, shoot height, and shoot and root dry weights of seedlings grown under chilling stress. Hydroponic applications of SA or ASA significantly alleviated the accumulation of malondialdehyde, hydrogen peroxide, and superoxide radicals in roots and leaves of both lines under chilling stress, and the applications also increased the photosynthetic pigments, including chlorophyll a, chlorophyll b, and carotenoids. However, 4-aminosalicylic acid and 4-aminobenzoic acid applications had no significant effect in ameliorating the growth inhibition of seedlings under chilling stress. This study showed that SA and ASA significantly induced the chilling tolerance of maize; however, 4-aminosalicylic acid and 4-aminobenzoic acid were not effective in inducing tolerance to chilling stress. The results suggest that only SA analogues with biological activity may have the ability to induce chilling tolerance of maize.


2012 ◽  
Vol 50 (No. 9) ◽  
pp. 385-389 ◽  
Author(s):  
J. Rajchard

Amphibians are interesting animals, very often kept by aquarists and vivarists. Their ability of intraspecific chemical signalization belongs to very interesting biological features. The skin glands of anurans secrete various biologically active compounds. The pheromones are peptides consisting of various numbers of amino acid residues and their synthesis is regulated by hormones (e.g. prolactin and androgens). Similarly, the responsiveness of the vomeronasal epithelium to some of these compounds is enhanced by some hormonal substances (prolactin and oestrogen). Hypophyseal hormones, arginine vasotocin and gonadotropin-releasing hormone are involved in the humoral regulation of pheromone discharge. The storage of some compounds with pheromonal activity in a biologically inactive form was also proved. The pheromones have an important role in sexual relationships. These chemosignals increase female receptivity and are probably involved in the mate choice. The courtship pheromone signals may be conserved across related species. Chemosignals play an important role in female attraction and/or territorial announcement. In addition to sex pheromones, various neuropeptides, antimicrobial and other biologically active peptides were found in skin glands of these amphibians. The infochemical system can be disturbed by a chemical influence in the environment.


1989 ◽  
Vol 76 (3) ◽  
pp. 237-241 ◽  
Author(s):  
B. J. Rathbone ◽  
A. W. Johnson ◽  
Judith I. Wyatt ◽  
J. Kelleher ◽  
R. V. Heatley ◽  
...  

1. Concentrations of ascorbic acid (ascorbic and dehydro-ascorbic; A+D; measured by the 2,4-dinitrophenylhydrazine method) of nearly three times those of plasma are present in gastric juice samples from patients with normal gastric histology. 2. A significant reduction in gastric juice ascorbic acid (A+D) was observed in patients with chronic gastritis. This reduction in concentration was independent of the grade of gastritis. 3. Concentrations of ascorbic acid (A+D) in gastric biopsy specimens were consistently higher in the antrum than in the body of the stomach. 4. These data demonstrate that considerable quantities of ascorbic acid (A+D) are normally ‘secreted’ into the stomach. 5. Ascorbic acid (ascorbic only; A; measured by h.p.l.c.) was present predominantly in its biologically active form in the patients with normal gastric histology. However, in patients with gastritis, independent of grade, ascorbic acid was present predominantly in its oxidized, biologically inactive form.


2020 ◽  
Author(s):  
Yasuyuki Kawaharada ◽  
Niels Sandal ◽  
Vikas Gupta ◽  
Haojie Jin ◽  
Maya Kawaharada ◽  
...  

AbstractForward and reverse genetics using the model legumes Lotus japonicus and Medicago truncatula have been instrumental for identifying the essential genes governing legume-rhizobial symbiosis. However, little is known about the effects of intraspecific variation on symbiotic signaling. The Lotus accessions Gifu and MG20 show differentiated phenotypic responses to the Mesorhizobium loti exoU mutant that produces truncated exopolysaccharides. Using Quantitative Trait Locus sequencing (QTL-seq), we identify the Pxy gene as a component of this differential exoU response. Lotus Pxy encodes a leucine-rich-repeat kinase similar to Arabidopsis PXY, which regulates stem vascular development. We show that Lotus pxy insertion mutants display defects in root vascular organization, as well as lateral root and nodule formation. Our work links Pxy to de novo organogenesis in the root, highlights the genetic overlap between regulation of lateral root and nodule formation, and demonstrates that specific natural variants of Pxy differentially affect nodulation signaling.


2018 ◽  
Vol 45 (12) ◽  
pp. 1173 ◽  
Author(s):  
Xinyuan Li ◽  
Lijie Li ◽  
Shiyu Zuo ◽  
Jing Li ◽  
Shi Wei

The ABA-stress-ripening (ASR) gene is an abiotic stress-response gene that is widely present in higher plants. The expression of ASR was recently shown to effectively improve plant tolerance to several abiotic stresses. However, the role of ASR during chilling stress in maize (Zea mays L.) is unclear. In this study, we tested two maize varieties under chilling treatment. Our results showed that Jinyu 5 (JY5), a chilling-sensitive variety, had lower maximum PSII efficiency (Fv/Fm) and higher lipid peroxidation levels than Jidan 198 (JD198) under chilling conditions. At the same time, the enzymes superoxide dismutase (SOD) and peroxidase (POD) were more active in JD198 than in JY5 under chilling conditions. In addition, exogenous ABA spray pretreatments enhanced the chilling tolerance of maize, showing results such as increased Fv/Fm ratios, and SOD and POD activity; significantly reduced lipid peroxidation levels and increased expression of ZmASR1 in both JD198 and JY5 under chilling conditions. Moreover, when the ZmASR1 expression levels in the two maize varieties were compared, the chilling-sensitive line JY5 had significantly lower expression in both the leaves and roots than JD198 under chilling stress, indicating that the expression of ZmASR1 is a chilling response option in plants. Furthermore, we overexpressed ZmASR1 in JY5; this resulted in enhanced maize chilling tolerance, which reduced the decreases in Fv/Fm and the malondialdehyde content and enhanced SOD and POD activity. Overall, these results suggest that ZmASR1 expression plays a protective role against chilling stress in plants.


2016 ◽  
Vol 62 (3) ◽  
pp. 377-382
Author(s):  
David S Waugh

A common problem encountered during the production of recombinant proteins, particularly in bacteria, is their tendency to accumulate in an insoluble and inactive form (i.e., as inclusion bodies). Although sometimes it is possible to convert the aggregated material into native, biologically active protein, this is a time-consuming, costly, and uncertain undertaking. Consequently, a general means of circumventing the formation of inclusion bodies is highly desirable. During the 1990s, it was serendipitously discovered that certain highly soluble proteins have the ability to enhance the solubility of their fusion partners, thereby preventing them from forming insoluble aggregates. In the ensuing years, Escherichia coli maltose-binding protein (MBP) has emerged as one of the most effective solubility enhancers. Moreover, once rendered soluble by fusion to MBP, many proteins are able to fold into their biologically active conformations. This brief review article focuses on our current understanding of what makes MBP such an effective solubility enhancer and how it facilitates the proper folding of its fusion partners.


2019 ◽  
Author(s):  
Kelsey J.R.P. Byers ◽  
Kathy Darragh ◽  
Jamie Musgrove ◽  
Diana Abondano Almeida ◽  
Sylvia Fernanda Garza ◽  
...  

AbstractUnderstanding the production, response, and genetics of signals used in mate choice can inform our understanding of the evolution of both intraspecific mate choice and reproductive isolation. Sex pheromones are important for courtship and mate choice in many insects, but we know relatively little of their role in butterflies. The butterfly Heliconius melpomene uses a complex blend of wing androconial compounds during courtship. Electroantennography in H. melpomene and its close relative H. cydno showed that responses to androconial extracts were not species-specific. Females of both species responded equally strongly to extracts of both species, suggesting conservation of peripheral nervous system elements across the two species. Individual blend components provoked little to no response, with the exception of octadecanal, a major component of the H. melpomene blend. Supplementing octadecanal on the wings of octadecanal-rich H. melpomene males led to an increase in the time until mating, demonstrating the bioactivity of octadecanal in Heliconius. Using quantitative trait locus (QTL) mapping, we identified a single locus on chromosome 20 responsible for 41% of the parental species’ difference in octadecanal production. This QTL does not overlap with any of the major wing color or mate choice loci, nor does it overlap with known regions of elevated or reduced FST. A set of 16 candidate fatty acid biosynthesis genes lies underneath the QTL. Pheromones in Heliconius carry information relevant for mate choice and are under simple genetic control, suggesting they could be important during speciation.


2004 ◽  
Vol 9 (4) ◽  
pp. 309-321 ◽  
Author(s):  
Zhuomei Lu ◽  
Zhizhang Yin ◽  
Linda James ◽  
Rosalinda Syto ◽  
Jill M. Stafford ◽  
...  

Most of the protein kinase inhibitors being developed are directed toward the adenosine triphosphate (ATP) binding site that is highly conserved in many kinases. A major issue with these inhibitors is the specificity for a given kinase. Structure determination of several kinases has shown that protein kinases adopt distinct conformations in their inactive state, in contrast to their strikingly similar conformations in their active states. Hence, alternative assay formats that can identify compounds targeting the inactive form of a protein kinase are desirable. The authors describe the development and optimization of an Immobilized Metal Assay for Phosphochemicals (IMAP™)-based couple™d assay using PDK1 and inactive Akt-2 enzymes. PDK1 phosphorylates Akt-2 at Thr 309 in the catalytic domain, leading to enzymatic activation. Activation of Akt by PDK1 is measured by quantitating the phosphorylation of Akt-specific substrate peptide using the IMAP assay format. This IMAP-coupled assay has been formatted in a 384-well microplate format with a Z′ of 0.73 suitable for high-throughput screening. This assay was evaluated by screening the biologically active sample set LOPAC™ and validated with the protein kinase C inhibitor staurosporine. The IC50 value generated was comparable to the value obtained by the radioactive 33P-γ-ATP flashplate transfer assay. This coupled assay has the potential to identify compounds that target the inactive form of Akt and prevent its activation by PDK1, in addition to finding inhibitors of PDK1 and activated Akt enzymes.


1996 ◽  
Vol 271 (5) ◽  
pp. H2014-H2024 ◽  
Author(s):  
M. A. Lovich ◽  
E. R. Edelman

Local vascular drug delivery systems provide elevated concentrations in target arterial tissues while minimizing systemic side effects; however, definition of their precise pharmacokinetics remains elusive. The standard labeled tracer assays used in experimental vascular pharmacokinetic studies of these systems are limited because they quantify the arterial average drug concentration as opposed to transmural concentration profiles, require many animal experiments to elucidate the time-varying deposition, and track label rather than intact biologically active drug. In this study, computational simulations of drug deposition and distribution in vascular tissues after release from these systems have provided two important insights. First, simulations of arteries that were uniformly loaded with heparin predicted that most of the drug is cleared in < 1 h, illustrating the need for sustained modes of delivery. Second, some of the limitations of labeled tracers can be over come by combining experimental data with simulations that provided high spatial resolution. This enabled us to describe the kinetics of the deposited drug and distinguish soluble from reversibly bound and internalized drug within cells. The latter can help differentiate biologically viable drug from its committed inactive form or metabolites. These points have been illustrated through simulations of a novel endovascular hydrogel heparin-delivery system that has been applied to the porcine coronary artery. The basic models used in these simulations are generalized, and with the appropriate boundary conditions, binding and distribution constants can be used to study the physical interactions between any compound and tissue.


Sign in / Sign up

Export Citation Format

Share Document