scholarly journals Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy

2019 ◽  
Vol 116 (32) ◽  
pp. 16028-16035 ◽  
Author(s):  
Piotr K. Kopinski ◽  
Kevin A. Janssen ◽  
Patrick M. Schaefer ◽  
Sophie Trefely ◽  
Caroline E. Perry ◽  
...  

Diseases associated with mitochondrial DNA (mtDNA) mutations are highly variable in phenotype, in large part because of differences in the percentage of normal and mutant mtDNAs (heteroplasmy) present within the cell. For example, increasing heteroplasmy levels of the mtDNA tRNALeu(UUR) nucleotide (nt) 3243A > G mutation result successively in diabetes, neuromuscular degenerative disease, and perinatal lethality. These phenotypes are associated with differences in mitochondrial function and nuclear DNA (nDNA) gene expression, which are recapitulated in cybrid cell lines with different percentages of m.3243G mutant mtDNAs. Using metabolic tracing, histone mass spectrometry, and NADH fluorescence lifetime imaging microscopy in these cells, we now show that increasing levels of this single mtDNA mutation cause profound changes in the nuclear epigenome. At high heteroplasmy, mitochondrially derived acetyl-CoA levels decrease causing decreased histone H4 acetylation, with glutamine-derived acetyl-CoA compensating when glucose-derived acetyl-CoA is limiting. In contrast, α-ketoglutarate levels increase at midlevel heteroplasmy and are inversely correlated with histone H3 methylation. Inhibition of mitochondrial protein synthesis induces acetylation and methylation changes, and restoration of mitochondrial function reverses these effects. mtDNA heteroplasmy also affects mitochondrial NAD+/NADH ratio, which correlates with nuclear histone acetylation, whereas nuclear NAD+/NADH ratio correlates with changes in nDNA and mtDNA transcription. Thus, mutations in the mtDNA cause distinct metabolic and epigenomic changes at different heteroplasmy levels, potentially explaining transcriptional and phenotypic variability of mitochondrial disease.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Pappu Ananya ◽  
Michael Binder ◽  
Yang Wanjun ◽  
Rebecca McClellan ◽  
Brittney Murray ◽  
...  

Introduction: Mitochondrial heart disease due to pathogenic mitochondrial DNA (mtDNA) mutations can present as hypertrophic or dilated cardiomyopathy, ventricular arrhythmias and conduction disease. It is estimated that the mutation rate of mtDNA is 10 to 20-fold higher than that of nuclear DNA genes due to damage from reactive oxygen species released as byproducts during oxidative phosphorylation. When a new mtDNA mutation arises, it creates an intracellular heteroplasmic mixture of mutant and normal mtDNAs, called heteroplasmy. Heteroplasmy levels can vary in various tissues and examining mtDNA variants in blood may not be representative for the heart. The frequency of pathogenic mtDNA variants in myocardial tissues in unknown. Hypothesis: Human ventricular tissue may contain mtDNA mutations which can lead to alterations in mitochondrial function and increase individual risk for heart failure. Methods: Mitochondrial DNA was isolated from 61 left ventricular myocardial samples obtained from failing human hearts at the time of transplantation. mtDNA was sequenced with 23 primer pairs. In silico prediction of non-conservative missense variants was performed via PolyPhen-2. Heteroplasmy levels of variants predicted to be pathogenic were quantified using allele-specific ARMS-PCR. Results: We identified 21 mtDNA non-synonymous variants predicted to be pathogenic in 17 hearts. Notably, one heart contained four pathogenic mtDNA variants (ATP6: p.M104; ND5: p.P265S; ND4: p.N390S and p.L445F). Heteroplasmy levels exceeded 90% for all four variants in myocardial tissue and were significantly lower in blood. No pathogenic mtDNA variants were identified in 44 hearts. Hearts with mtDNA mutations had higher levels of myocardial GDF-15 (growth differentiation factor-15; 6.2±2.3 vs. 1.3±0.18, p=0.045), an established serum biomarker in various mitochondrial diseases. Conclusions: Non-synonymous mtDNA variants predicted to be pathogenic are common in human left ventricular tissue and may be an important modifier of the heart failure phenotype. Future studies are necessary to correlate myocardial mtDNA mutations with cardiovascular outcomes and to assess whether serum GDF-15 allows identifying patients with myocardial mtDNA mutations.


Author(s):  
George B. Stefano ◽  
Richard M. Kream

AbstractMitochondrial DNA (mtDNA) heteroplasmy is the dynamically determined co-expression of wild type (WT) inherited polymorphisms and collective time-dependent somatic mutations within individual mtDNA genomes. The temporal expression and distribution of cell-specific and tissue-specific mtDNA heteroplasmy in healthy individuals may be functionally associated with intracellular mitochondrial signaling pathways and nuclear DNA gene expression. The maintenance of endogenously regulated tissue-specific copy numbers of heteroplasmic mtDNA may represent a sensitive biomarker of homeostasis of mitochondrial dynamics, metabolic integrity, and immune competence. Myeloid cells, monocytes, macrophages, and antigen-presenting dendritic cells undergo programmed changes in mitochondrial metabolism according to innate and adaptive immunological processes. In the central nervous system (CNS), the polarization of activated microglial cells is dependent on strategically programmed changes in mitochondrial function. Therefore, variations in heteroplasmic mtDNA copy numbers may have functional consequences in metabolically competent mitochondria in innate and adaptive immune processes involving the CNS. Recently, altered mitochondrial function has been demonstrated in the progression of coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Accordingly, our review is organized to present convergent lines of empirical evidence that potentially link expression of mtDNA heteroplasmy by functionally interactive CNS cell types to the extent and severity of acute and chronic post-COVID-19 neurological disorders.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Amabel M Orogo ◽  
Dieter A Kubli ◽  
Anne N Murphy ◽  
Åsa B Gustafsson

Activation and participation of cardiac progenitor cells (CPCs) in regeneration are critical for effective repair in the wake of pathologic injury. Stem cell activation and commitment involve increased energy demand and mitochondrial biogenesis. To date, little attention has been paid to the importance of mitochondria in CPC survival, proliferation and differentiation. CPC function is reduced with age but the underlying mechanism is still unclear. Mitochondrial DNA (mtDNA) is more susceptible to oxidative attacks than nuclear DNA due to its proximity to the mitochondrial respiratory chain and lack of protective histone-like proteins. With age, mtDNA accumulates mutations that can impair mitochondrial respiration and increase ROS production. In this study, we examined the effects of accumulating mtDNA mutations on CPC proliferation and survival. We have found that incubation of uncommitted c-kit+ CPCs in differentiation medium increased mitochondrial mass and expansion of the mitochondrial network, which correlated with increased cell size and expression of cardiac lineage commitment markers. Differentiation activated mitochondrial biogenesis, increased mtDNA copy number, and enhanced oxidative capacity and cellular ATP levels in CPCs. To investigate the effect of mtDNA mutations and aging on CPC survival and function, we utilized a mouse model in which a mutation in the mtDNA polymerase γ (POLG m/m ) leads to accumulation of mtDNA mutations, mitochondrial dysfunction, and accelerated aging. Isolated CPCs from hearts of 2-month old POLG m/m mice had reduced proliferation and were more susceptible to oxidative stress and chemotherapeutic agents compared to WT CPCs. The majority of POLG m/m CPCs contained fragmented mitochondria as shown by immunostaining. Incubation in differentiation medium resulted in fewer GATA-4 positive POLG m/m CPCs compared to WT CPCs. The reduced differentiation in these POLG m/m CPCs correlated with reduced PGC-1α expression and OXPHOS protein levels, suggesting that mitochondrial biogenesis is impaired. These data demonstrate that mitochondria play a critical role in CPC function, and accumulation of mtDNA mutations impairs CPC function and reduces their repair potential.


2008 ◽  
Vol 181 (7) ◽  
pp. 1117-1128 ◽  
Author(s):  
Robert W. Gilkerson ◽  
Eric A. Schon ◽  
Evelyn Hernandez ◽  
Mercy M. Davidson

Mitochondrial DNA (mtDNA) is packaged into DNA-protein assemblies called nucleoids, but the mode of mtDNA propagation via the nucleoid remains controversial. Two mechanisms have been proposed: nucleoids may consistently maintain their mtDNA content faithfully, or nucleoids may exchange mtDNAs dynamically. To test these models directly, two cell lines were fused, each homoplasmic for a partially deleted mtDNA in which the deletions were nonoverlapping and each deficient in mitochondrial protein synthesis, thus allowing the first unequivocal visualization of two mtDNAs at the nucleoid level. The two mtDNAs transcomplemented to restore mitochondrial protein synthesis but were consistently maintained in discrete nucleoids that did not intermix stably. These results indicate that mitochondrial nucleoids tightly regulate their genetic content rather than freely exchanging mtDNAs. This genetic autonomy provides a molecular mechanism to explain patterns of mitochondrial genetic inheritance, in addition to facilitating therapeutic methods to eliminate deleterious mtDNA mutations.


Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 608 ◽  
Author(s):  
Huanzheng Li ◽  
Jesse Slone ◽  
Lin Fei ◽  
Taosheng Huang

The mitochondrion is the only organelle in the human cell, besides the nucleus, with its own DNA (mtDNA). Since the mitochondrion is critical to the energy metabolism of the eukaryotic cell, it should be unsurprising, then, that a primary driver of cellular aging and related diseases is mtDNA instability over the life of an individual. The mutation rate of mammalian mtDNA is significantly higher than the mutation rate observed for nuclear DNA, due to the poor fidelity of DNA polymerase and the ROS-saturated environment present within the mitochondrion. In this review, we will discuss the current literature showing that mitochondrial dysfunction can contribute to age-related common diseases such as cancer, diabetes, and other commonly occurring diseases. We will then turn our attention to the likely role that mtDNA mutation plays in aging and senescence. Finally, we will use this context to develop a mathematical formula for estimating for the accumulation of somatic mtDNA mutations with age. This resulting model shows that almost 90% of non-proliferating cells would be expected to have at least 100 mutations per cell by the age of 70, and almost no cells would have fewer than 10 mutations, suggesting that mtDNA mutations may contribute significantly to many adult onset diseases.


2021 ◽  
Author(s):  
Melissa Franco ◽  
Zoe Fleischmann ◽  
Sofia Annis ◽  
Konstantin Khrapko ◽  
Jonathan L. Tilly ◽  
...  

The resilience of the mitochondrial genome to a high mutational pressure depends, in part, on purifying selection against detrimental mutations in the germline. It is crucial to understand the mechanisms of this process. Recently, Floros et al. concluded that much of the purifying selection takes place during the proliferation of primordial germ cells (PGCs) because, according to their analysis, the synonymity of mutations in late PGCs was seemingly increased compared to those in early PGCs. We re-analyzed the Floros et al. mutational data and discovered a high proportion of sequence variants that are not true mutations, but originate from NUMTs, the latter of which are segments of mitochondrial DNA (mtDNA) inserted into nuclear DNA, up to millions of years ago. This is a well-known artifact in mtDNA mutational analysis. Removal of these artifacts from the Floros et al. dataset abolishes the reported effect of purifying selection in PGCs. We therefore conclude that the mechanism of germline selection of mtDNA mutations remains open for debate, and more research is needed to fully elucidate the timing and nature of this process.


2020 ◽  
Author(s):  
Ye Zhu ◽  
Jia You ◽  
Chao Xu ◽  
Xiang Gu

Abstract Background: Nuclear genome or family mitochondrial screening system has become the hot focus of studies into essential hypertension. The role of mitochondrial DNA (mtDNA) in sporadic Chinese patients with hypertension has not been fully understood. The study was to evaluate the associations of mtDNA mutations with maternally inherited essential hypertensive subjects in China.Methods: From June 2009 to June 2016, a total of 800 gender-matched Chinese patients with maternally inherited essential hypertension (MIEH) and control group were 1:1 enrolled in this case-control study. Genomic DNA was extracted from each person's peripheral blood cells. The main mtDNA locations for MIEH were screened with oligodeoxynucleotides 3777-4679bp, analyzed and compared with the updated consensus Cambridge Sequence. Pathogenic mtDNA mutations were identified from the mitochondrial map.Results: MIEH subjects presented significantly higher values than those of control group in abdominal circumference(AC), waist circumference(WC), body mass index(BMI), fasting blood glucose(FBG), triglyceride(TG), low-density lipoprotein cholesterol (LDL) and renal function (P<0.05). MIEH subjects carried more amino acid changes and coding sequence variants (P<0.01) than control group. The allele frequencies of the eight single nucleotide polymorphisms(SNPs) were significantly different between the two groups, including m.3970 C>T, m.4048G>A, m.4071C>T, m.4086C>T, m. 4164A>G and m.4248T>C in ND1 gene, and m.4386T>C and m.4394C>T in tRNAGln gene(P<0.001). Fifty-five homoplasmic or heteroplasmic mutations were detected in 5 genes: ND1, tRNAIle, tRNAMet, tRNAGln and ND2 gene. The ND1 gene was the main mutation site, where the most mtDNA mutation was m.3970 C>T.Conclusions: The mtDNA mutations were involved in the process of MIEH. We identified mitochondrial genetic characteristics in MIEH patients in China. The present research serves as a solid foundation for further detailed research on the association between MIEH and mitochondrial dysfunction, and their causal relationship in Chinese and other populations with a similar lifestyle.


Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 591
Author(s):  
Olga Buneeva ◽  
Valerii Fedchenko ◽  
Arthur Kopylov ◽  
Alexei Medvedev

Mitochondria, the energy stations of the cell, are the only extranuclear organelles, containing their own (mitochondrial) DNA (mtDNA) and the protein synthesizing machinery. The location of mtDNA in close proximity to the oxidative phosphorylation system of the inner mitochondrial membrane, the main source of reactive oxygen species (ROS), is an important factor responsible for its much higher mutation rate than nuclear DNA. Being more vulnerable to damage than nuclear DNA, mtDNA accumulates mutations, crucial for the development of mitochondrial dysfunction playing a key role in the pathogenesis of various diseases. Good evidence exists that some mtDNA mutations are associated with increased risk of Parkinson’s disease (PD), the movement disorder resulted from the degenerative loss of dopaminergic neurons of substantia nigra. Although their direct impact on mitochondrial function/dysfunction needs further investigation, results of various studies performed using cells isolated from PD patients or their mitochondria (cybrids) suggest their functional importance. Studies involving mtDNA mutator mice also demonstrated the importance of mtDNA deletions, which could also originate from abnormalities induced by mutations in nuclear encoded proteins needed for mtDNA replication (e.g., polymerase γ). However, proteomic studies revealed only a few mitochondrial proteins encoded by mtDNA which were downregulated in various PD models. This suggests nuclear suppression of the mitochondrial defects, which obviously involve cross-talk between nuclear and mitochondrial genomes for maintenance of mitochondrial functioning.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Ye Zhu ◽  
Jia You ◽  
Chao Xu ◽  
Xiang Gu

Abstract Background Nuclear genome or family mitochondrial screening system has become the hot focus of studies into essential hypertension. The role of mitochondrial DNA (mtDNA) in sporadic Chinese patients with hypertension has not been fully understood. The study was to evaluate the associations of mtDNA mutations with maternally inherited essential hypertensive subjects in China. Methods From June 2009 to June 2016, a total of 800 gender-matched Chinese patients with maternally inherited essential hypertension (MIEH) and control group were 1:1 enrolled in this case-control study. Genomic DNA was extracted from each person’s peripheral blood cells. The main mtDNA locations for MIEH were screened with oligodeoxynucleotides 3777-4679 bp, analyzed and compared with the updated consensus Cambridge Sequence. Pathogenic mtDNA mutations were identified from the mitochondrial map. Results MIEH subjects presented significantly higher values than those of control group in abdominal circumference (AC), waist circumference (WC), body mass index (BMI), fasting blood glucose (FBG), triglyceride (TG), low-density lipoprotein cholesterol (LDL) and renal function (P < 0.05). MIEH subjects carried more amino acid changes and coding sequence variants (P < 0.01) than control group. The allele frequencies of the eight single nucleotide polymorphisms (SNPs) were significantly different between the two groups, including m.3970 C > T, m.4048G > A, m.4071C > T, m.4086C > T, m. 4164A > G and m.4248 T > C in ND1 gene, and m.4386 T > C and m.4394C > T in tRNAGln gene(P < 0.001). Fifty-five homoplasmic or heteroplasmic mutations were detected in 5 genes: ND1, tRNAIle, tRNAMet, tRNAGln and ND2 gene. The ND1 gene was the main mutation site, where the most mtDNA mutation was m.3970 C > T. Conclusions The mtDNA mutations were involved in the process of MIEH. We identified mitochondrial genetic characteristics in MIEH patients in China. The present research serves as a solid foundation for further detailed research on the association between MIEH and mitochondrial dysfunction, and their causal relationship in Chinese and other populations with a similar lifestyle.


1983 ◽  
Vol 3 (11) ◽  
pp. 1949-1957
Author(s):  
R Kelly ◽  
S L Phillips

A cDNA preparation, synthesized by using Saccharomyces cerevisiae mitochondrial RNA as template and oligodeoxythymidylic acid as primer, was found to specifically hybridize to the mitochondrial 21S rRNA by the following criteria: (i) it hybridizes only to the 21S RNA species in mitochondrial RNA and not to RNA from a [rho0] mutant, and (ii) it hybridizes to fragments in restriction digests of mitochondrial DNA that contain the 21S rRNA gene but not to nuclear DNA. This cDNA was used as a probe to demonstrate that a 2.6-fold decrease in the cellular level of the mitochondrial large rRNA is associated with glucose repression of mitochondrial function in S. cerevisiae. A corresponding decrease in the level of mitochondrial DNA was not observed.


Sign in / Sign up

Export Citation Format

Share Document