scholarly journals Lysosomal degradation products induceCoxiella burnetiivirulence

2020 ◽  
Vol 117 (12) ◽  
pp. 6801-6810 ◽  
Author(s):  
Patrice Newton ◽  
David R. Thomas ◽  
Shawna C. O. Reed ◽  
Nicole Lau ◽  
Bangyan Xu ◽  
...  

Coxiella burnetiiis an intracellular pathogen that replicates in a lysosome-like vacuole through activation of a Dot/Icm-type IVB secretion system and subsequent translocation of effectors that remodel the host cell. Here a genome-wide small interfering RNA screen and reporter assay were used to identify host proteins required for Dot/Icm effector translocation. Significant, and independently validated, hits demonstrated the importance of multiple protein families required for endocytic trafficking of theC. burnetii-containing vacuole to the lysosome. Further analysis demonstrated that the degradative activity of the lysosome created by proteases, such as TPP1, which are transported to the lysosome by receptors, such as M6PR and LRP1, are critical forC. burnetiivirulence. Indeed, theC. burnetiiPmrA/B regulon, responsible for transcriptional up-regulation of genes encoding the Dot/Icm apparatus and a subset of effectors, induced expression of a virulence-associated transcriptome in response to degradative products of the lysosome. Luciferase reporter strains, and subsequent RNA-sequencing analysis, demonstrated that particular amino acids activate theC. burnetiiPmrA/B two-component system. This study has further enhanced our understanding ofC. burnetiipathogenesis, the host–pathogen interactions that contribute to bacterial virulence, and the different environmental triggers pathogens can sense to facilitate virulence.

2017 ◽  
Vol 114 (29) ◽  
pp. E5969-E5978 ◽  
Author(s):  
Alicia S. DeFrancesco ◽  
Nadezda Masloboeva ◽  
Adnan K. Syed ◽  
Aaron DeLoughery ◽  
Niels Bradshaw ◽  
...  

Staphylococcus aureusis a leading cause of both nosocomial and community-acquired infection. Biofilm formation at the site of infection reduces antimicrobial susceptibility and can lead to chronic infection. During biofilm formation, a subset of cells liberate cytoplasmic proteins and DNA, which are repurposed to form the extracellular matrix that binds the remaining cells together in large clusters. Using a strain that forms robust biofilms in vitro during growth under glucose supplementation, we carried out a genome-wide screen for genes involved in the release of extracellular DNA (eDNA). A high-density transposon insertion library was grown under biofilm-inducing conditions, and the relative frequency of insertions was compared between genomic DNA (gDNA) collected from cells in the biofilm and eDNA from the matrix. Transposon insertions into genes encoding functions necessary for eDNA release were identified by reduced representation in the eDNA. On direct testing, mutants of some of these genes exhibited markedly reduced levels of eDNA and a concomitant reduction in cell clustering. Among the genes with robust mutant phenotypes weregdpP, which encodes a phosphodiesterase that degrades the second messenger cyclic-di-AMP, andxdrA, the gene for a transcription factor that, as revealed by RNA-sequencing analysis, influences the expression of multiple genes, including many involved in cell wall homeostasis. Finally, we report that growth in biofilm-inducing medium lowers cyclic-di-AMP levels and does so in a manner that depends on thegdpPphosphodiesterase gene.


Author(s):  
Xiaoping Huang ◽  
Hongyu Zhang ◽  
Qiang Wang ◽  
Rong Guo ◽  
Lingxia Wei ◽  
...  

Abstract Key message This study showed the systematic identification of long non-coding RNAs (lncRNAs) involving in flag leaf senescence of rice, providing the possible lncRNA-mRNA regulatory relationships and lncRNA-miRNA-mRNA ceRNA networks during leaf senescence. Abstract LncRNAs have been reported to play crucial roles in diverse biological processes. However, no systematic identification of lncRNAs associated with leaf senescence in plants has been studied. In this study, a genome-wide high throughput sequencing analysis was performed using rice flag leaves developing from normal to senescence. A total of 3953 lncRNAs and 38757 mRNAs were identified, of which 343 lncRNAs and 9412 mRNAs were differentially expressed. Through weighted gene co-expression network analysis (WGCNA), 22 continuously down-expressed lncRNAs targeting 812 co-expressed mRNAs and 48 continuously up-expressed lncRNAs targeting 1209 co-expressed mRNAs were considered to be significantly associated with flag leaf senescence. Gene Ontology results suggested that the senescence-associated lncRNAs targeted mRNAs involving in many biological processes, including transcription, hormone response, oxidation–reduction process and substance metabolism. Additionally, 43 senescence-associated lncRNAs were predicted to target 111 co-expressed transcription factors. Interestingly, 8 down-expressed lncRNAs and 29 up-expressed lncRNAs were found to separately target 12 and 20 well-studied senescence-associated genes (SAGs). Furthermore, analysis on the competing endogenous RNA (CeRNA) network revealed that 6 down-expressed lncRNAs possibly regulated 51 co-expressed mRNAs through 15 miRNAs, and 14 up-expressed lncRNAs possibly regulated 117 co-expressed mRNAs through 21 miRNAs. Importantly, by expression validation, a conserved miR164-NAC regulatory pathway was found to be possibly involved in leaf senescence, where lncRNA MSTRG.62092.1 may serve as a ceRNA binding with miR164a and miR164e to regulate three transcription factors. And two key lncRNAs MSTRG.31014.21 and MSTRG.31014.36 also could regulate the abscisic-acid biosynthetic gene BGIOSGA025169 (OsNCED4) and BGIOSGA016313 (NAC family) through osa-miR5809. The possible regulation networks of lncRNAs involving in leaf senescence were discussed, and several candidate lncRNAs were recommended for prior transgenic analysis. These findings will extend the understanding on the regulatory roles of lncRNAs in leaf senescence, and lay a foundation for functional research on candidate lncRNAs.


Endocrinology ◽  
2018 ◽  
Vol 160 (1) ◽  
pp. 38-54 ◽  
Author(s):  
Keiichi Itoi ◽  
Ikuko Motoike ◽  
Ying Liu ◽  
Sam Clokie ◽  
Yasumasa Iwasaki ◽  
...  

Abstract Glucocorticoids (GCs) are essential for stress adaptation, acting centrally and in the periphery. Corticotropin-releasing factor (CRF), a major regulator of adrenal GC synthesis, is produced in the paraventricular nucleus of the hypothalamus (PVH), which contains multiple neuroendocrine and preautonomic neurons. GCs may be involved in diverse regulatory mechanisms in the PVH, but the target genes of GCs are largely unexplored except for the CRF gene (Crh), a well-known target for GC negative feedback. Using a genome-wide RNA-sequencing analysis, we identified transcripts that changed in response to either high-dose corticosterone (Cort) exposure for 12 days (12-day high Cort), corticoid deprivation for 7 days (7-day ADX), or acute Cort administration. Among others, canonical GC target genes were upregulated prominently by 12-day high Cort. Crh was upregulated or downregulated most prominently by either 7-day ADX or 12-day high Cort, emphasizing the recognized feedback effects of GC on the hypothalamic-pituitary-adrenal (HPA) axis. Concomitant changes in vasopressin and apelin receptor gene expression are likely to contribute to HPA repression. In keeping with the pleotropic cellular actions of GCs, 7-day ADX downregulated numerous genes of a broad functional spectrum. The transcriptome response signature differed markedly between acute Cort injection and 12-day high Cort. Remarkably, six immediate early genes were upregulated 1 hour after Cort injection, which was confirmed by quantitative reverse transcription PCR and semiquantitative in situ hybridization. This study may provide a useful database for studying the regulatory mechanisms of GC-dependent gene expression and repression in the PVH.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Andreas S Barth ◽  
Takeshi Aiba ◽  
Victoria Halperin ◽  
Deborah DiSilvestre ◽  
Chakir Khalid ◽  
...  

Purpose: Cardiac Resynchronization Therapy (CRT) improves symptoms and reduces mortality in patients with heart failure (HF). To characterize the molecular processes associated with functional improvement in CRT, we used a genomic approach in a large animal HF model. Methods: After creation of a left bundle branch block (LBBB), dogs in the HF group were subjected to either rapid atrial pacing with 200 bpm for 6 weeks (dyssynchronous HF, DHF, n=10), or 3 weeks of atrial pacing followed by 3 weeks of biventricular stimulation at 200bpm (CRT, n=9). Control animals without LBBB were not paced (NF, n=11). After 6 weeks, RNA from anterior and lateral regions of the LV was hybridized onto canine 44K arrays. Statistical Analysis of Microarrays (SAM) was used for data analysis. Results: Echocardiographically, CRT led to a significant increase in stroke volume (+27%, p=0.03) which translated into a non-significant increase in EF (DHF 25±4%; CRT 31±3% (p=0.15); NF 67±3%). A multiclass analysis of NF, DHF and CRT animals identified 1050 differentially expressed transcripts between anterior and lateral walls with a false discovery rate of 5%. For all these transcripts, dyssynchrony-induced expression changes were reversed by CRT to levels of NF hearts. As a result, CRT samples clustered with NF rather than DHF samples. Of particular interest were genes encoding for signal transduction pathways and contractile processes. Conclusions: By using a whole genome approach, we demonstrate a profound effect of electrical activation on the regional cardiac transcriptome. This is the first study showing that dyssynchrony-induced gene expression changes can be corrected by CRT on a genome-wide level.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Guodong Chen ◽  
Jizhong Wang ◽  
Xin Qiao ◽  
Cong Jin ◽  
Weike Duan ◽  
...  

Abstract Background The members of the sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family are specific serine/threonine protein kinases in plants that play important roles in stress signal transduction and adaptation. Because of their positive regulatory roles in response to adverse conditions, the genes encoding thes proteins are considered potential candidates for breeding of plants for disease resistance and genetic improvement. However, there is far less information about this kinase family, and the function of these genes has not been explored in Rosaceae. Results A genome-wide survey and analysis of the genes encoding members of the SnRK2 family were performed in pear (Pyrus bretschneideri) and seven other Rosaceae species. A total of 71 SnRK2 genes were identified from the eight Rosaceae species and classified into three subgroups based on phylogenetic analysis and structural characteristics. Purifying selection played a crucial role in the evolution of SnRK2 genes, and whole-genome duplication and dispersed duplication were the primary forces underlying the characteristics of the SnRK2 gene family in Rosaceae. Transcriptome data and qRT-PCR assay results revealed that the distribution of PbrSnRK2s was very extensive, including across the roots, leaves, pollen, styles, and flowers, although most of them were mainly expressed in leaves. In addition, under stress conditions, the transcript levels of some of the genes were upregulated in leaves in response to ABA treatment. Conclusions This study provides useful information and a theoretical introduction for the study of the evolution, expression, and functions of the SnRK2 gene family in plants.


2014 ◽  
Vol 32 (4_suppl) ◽  
pp. 464-464
Author(s):  
Thai Huu Ho ◽  
Jeong-Heon Lee ◽  
Rafael Nunez Nateras ◽  
Erik P. Castle ◽  
Melissa L. Stanton ◽  
...  

464 Background: Although the von Hippel-Lindau (VHL) tumor suppressor gene is mutated in 60% of ccRCC, deletion of VHL in mice is insufficient for tumorigenesis. Sequencing of ccRCC tumors identified mutations in SETD2, a histone H3 lysine 36 (H3K36) trimethyltransferase. We hypothesize that loss of SETD2 methyltransferase activity alters the genome wide pattern of H3K36 trimethylation (H3K36me3) in ccRCC, and contributes to the cancer phenotype. Methods: To generate a genome-wide profile of H3K36me3 in frozen nephrectomy samples and RCC cell lines, we optimized a chromatin immunoprecipitation (ChIP) protocol for the isolation of DNA associated with H3K36me3. H3K36me3 is associated with open chromatin and an H3K36me3-specific antibody was used for immunoprecipitation of endogenous H3K36me3-bound DNA. ChIP PCR primers were optimized for active genes, such as actin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a “gene desert” on chromosome 12 (negative control). ChIP libraries were then generated from 3 paired uninvolved kidney and RCC and 2 RCC cell lines. In order to identify H3K36Me3 upregulated regions in uninvolved kidney and RCC, reads from the ChIP sequencing were mapped to the human genome using Burrows-Wheeler Aligner and SICER algorithms. Results: Using ChIP PCR, we found that active genomic regions were enriched 15-30 fold over the negative controls indicating that the quality and yield of immunoprecipitated DNA/chromatin complexes from frozen tissue was sufficient for ChIP sequencing. A preliminary ChIP sequencing analysis of RCC cell lines and frozen ccRCC tissue indicates that H3K36me3 enriched DNA sequences were mapped to exons (31.3%) compared to introns (13.5%, p<0.001), consistent with the role of H3K36me3 in transcription. Conclusions: Genomic regions enriched for H3K36Me3 binding were identified from patient-derived tissue and RCC cell lines. Current efforts are focused on comparing the H3K36me3 profiles between matched tumor and uninvolved kidney ChIP libraries to generate a genome wide map of dysregulated H3K36me3 modifications.


2010 ◽  
Vol 108 (1) ◽  
pp. 343-348 ◽  
Author(s):  
Uri Gophna ◽  
Yanay Ofran

A major factor in the evolution of microbial genomes is the lateral acquisition of genes that evolved under the functional constraints of other species. Integration of foreign genes into a genome that has different components and circuits poses an evolutionary challenge. Moreover, genes belonging to complex modules in the pretransfer species are unlikely to maintain their functionality when transferred alone to new species. Thus, it is widely accepted that lateral gene transfer favors proteins with only a few protein–protein interactions. The propensity of proteins to participate in protein–protein interactions can be assessed using computational methods that identify putative interaction sites on the protein. Here we report that laterally acquired proteins contain significantly more putative interaction sites than native proteins. Thus, genes encoding proteins with multiple protein–protein interactions may in fact be more prone to transfer than genes with fewer interactions. We suggest that these proteins have a greater chance of forming new interactions in new species, thus integrating into existing modules. These results reveal basic principles for the incorporation of novel genes into existing systems.


2020 ◽  
Author(s):  
Guodong Chen ◽  
Jizhong Wang ◽  
Xin Qiao ◽  
Cong Jin ◽  
Weike Duan ◽  
...  

Abstract Background: The members of the sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family are specific serine/threonine protein kinases in plants that play important roles in stress signal transduction and adaptation. Because of their positive regulatory roles in response to adverse conditions, the genes encoding thes proteins are considered potential candidates for breeding of plants for disease resistance and genetic improvement. However, there is far less information about this kinase family, and the function of these genes has not been explored in Rosaceae. Results: A genome-wide survey and analysis of the genes encoding members of the SnRK2 family were performed in pear ( Pyrus bretschneideri ) and seven other Rosaceae species. A total of 71 SnRK2 genes were identified from the eight Rosaceae species and classified into three subgroups based on phylogenetic analysis and structural characteristics. Purifying selection played a crucial role in the evolution of SnRK2 genes, and whole-genome duplication and dispersed duplication were the primary forces underlying the characteristics of the SnRK2 gene family in Rosaceae. Transcriptome data and qRT-PCR assay results revealed that the distribution of PbrSnRK2s was very extensive, including across the roots, leaves, pollen, styles, and flowers, although most of them were mainly expressed in leaves. In addition, under stress conditions, the transcript levels of some of the genes were upregulated in leaves in response to ABA treatment. Conclusions: This study provides useful information and a theoretical introduction for the study of the evolution, expression, and functions of the SnRK2 gene family in plants.


2021 ◽  
pp. 002203452110499
Author(s):  
R. Mueller ◽  
A. Chopra ◽  
H. Dommisch ◽  
A.S. Schaefer

Periodontitis is a common complex inflammatory disease of the oral cavity. It is characterized by inflammation of gingival tissues and alveolar bone loss. Recently, a genome-wide association study and 2 genome-wide association study meta-analyses found 2 associated regions (haplotype blocks) at the inhibitory immune receptor gene SIGLEC5 to increase the risk for periodontitis. The aims of the current study were the identification of the putative causal variants underlying these associations, characterization of their molecular biological effects, and validation of SIGLEC5 as the target gene. We mapped the associated single-nucleotide polymorphisms to DNA elements with predictive features of regulatory functions and screened the associated alleles for transcription factor (TF) binding sites. Antibody electrophoretic mobility shift assays (EMSAs) with allele-specific probes were used to identify TF binding and to quantify allele-specific effects on binding affinities. Luciferase reporter assays were used to quantify the effect directions and allele-specific strength of the associated regulatory elements. We used CRISPR-dCas9 gene activation to validate SIGLEC5 as a target of the association. EMSA in peripheral blood mononuclear cells showed that E-26 transformation–specific TF-related gene (ERG) binds at rs11084095, with almost complete loss of binding at the minor A-allele. Allele-specific reporter genes showed enhancer function of the DNA sequence at rs11084095, which was abrogated in the background of the A-allele. EMSA in B lymphocytes showed that TF MAF bZIP (MAFB) binds at the common G-allele of rs4284742, whereas the minor A-allele reduced TF binding by 69%, corresponding to 9-fold reduction of luciferase reporter gene activity by the A-allele. Using CRISPR-dCas9, we showed that the enhancer at rs4284742 strongly activated SIGLEC5 expression, validating this gene as the target gene of the association. We conclude that rs11084095 and rs4284742 are putatively causal for the genome-wide significant associations with periodontitis at SIGLEC5 that impair ERG and MAFB binding, respectively.


Sign in / Sign up

Export Citation Format

Share Document