scholarly journals The deletion of the protein phosphatase 1 regulator NIPP1 in testis causes hyperphosphorylation and degradation of the histone methyltransferase EZH2

2018 ◽  
Vol 293 (47) ◽  
pp. 18031-18039 ◽  
Author(s):  
Mónica Ferreira ◽  
Iris Verbinnen ◽  
Margarida Fardilha ◽  
Aleyde Van Eynde ◽  
Mathieu Bollen

Germ cell proliferation is epigenetically controlled, mainly through DNA methylation and histone modifications. However, the pivotal epigenetic regulators of germ cell self-renewal and differentiation in postnatal testis are still poorly defined. The histone methyltransferase enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of Polycomb repressive complex 2, represses target genes through trimethylation of histone H3 at Lys-27 (H3K27me3), and interacts (in)directly with both protein phosphatase 1 (PP1) and nuclear inhibitor of PP1 (NIPP1). Here, we report that postnatal, testis-specific ablation of NIPP1 in mice results in loss of EZH2 and reduces H3K27me3 levels. Mechanistically, the NIPP1 deletion abrogated PP1-mediated EZH2 dephosphorylation at two cyclin-dependent kinase sites (Thr-345/487), thereby generating hyperphosphorylated EZH2, which is a substrate for proteolytic degradation. Accordingly, alanine mutation of these residues prolonged the half-life of EZH2 in male germ cells. Our study discloses a key role for the PP1:NIPP1 holoenzyme in stabilizing EZH2 and maintaining the H3K27me3 mark on genes that are important for germ cell development and spermatogenesis.

2021 ◽  
Author(s):  
Manuel Tavares ◽  
Garima Khandelwal ◽  
Joanne Mutter ◽  
Keijo Viiri ◽  
Manuel Beltran ◽  
...  

Polycomb repressive complex 2 (PRC2) methylates histone H3 lysine 27 (H3K27me3) to maintain repression of genes specific for other cell types and is essential for cell differentiation. In endometrial stromal sarcoma, the PRC2 subunit SUZ12 is often fused with the NuA4/TIP60 subunit JAZF1. Here, we show that JAZF1-SUZ12 dysregulates PRC2 composition, recruitment, histone modification, gene expression and cell differentiation. The loss of the SUZ12 N-terminus in the fusion protein disrupted interaction with the PRC2 accessory factors JARID2, EPOP and PALI1 and prevented recruitment of PRC2 from RNA to chromatin. In undifferentiated cells, JAZF1-SUZ12 occupied PRC2 target genes but gained a JAZF1-like binding profile during cell differentiation. JAZF1-SUZ12 reduced H3K27me3 and increased H4Kac at PRC2 target genes, and this was associated with disruption in gene expression and cell differentiation programs. These results reveal the defects in chromatin regulation caused by JAZF1-SUZ12, which may underlie its role in oncogenesis.


2021 ◽  
Vol 7 ◽  
Author(s):  
Taku Kaitsuka ◽  
Kazuhito Tomizawa ◽  
Masayuki Matsushita

Several variant proteins are produced from EEF1D, including two representative proteins produced via alternative splicing machinery. One protein is the canonical translation eukaryotic elongation factor eEF1Bδ1, and the other is the heat shock-responsive transcription factor eEF1BδL. eEF1Bδ1 is phosphorylated by cyclin-dependent kinase 1 (CDK1), but the machinery controlling eEF1BδL phosphorylation and dephosphorylation has not been clarified. In this study, we found that both proteins were dephosphorylated under heat shock and proteotoxic stress, and this dephosphorylation was inhibited by okadaic acid. Using proteins with mutations at putative phosphorylated residues, we revealed that eEF1Bδ1 and eEF1BδL are phosphorylated at S133 and S499, respectively, and these residues are both CDK1 phosphorylation sites. The eEF1BδL S499A mutant more strongly activated HSPA6 promoter-driven reporter than the wild-type protein and S499D mutant. Furthermore, protein phosphatase 1 (PP1) was co-immunoprecipitated with eEF1Bδ1 and eEF1BδL, and PP1 dephosphorylated both proteins in vitro. Thus, this study clarified the role of phosphorylation/dephosphorylation in the functional regulation of eEF1BδL during heat shock.


2001 ◽  
Vol 276 (28) ◽  
pp. 26656-26665 ◽  
Author(s):  
Mairead E. Murnion ◽  
Richard R. Adams ◽  
Deborah M. Callister ◽  
C. David Allis ◽  
William C. Earnshaw ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 686-686
Author(s):  
Kim L. Rice ◽  
Itsaso Hormaeche ◽  
Melanie J. McConnell ◽  
Sergei Doulatov ◽  
Jared Flatow ◽  
...  

Abstract The t(11;17)(q23;q21) translocation is associated with a retinoic acid-insensitive form of acute promyelocytic leukemia (APL) involving the production of reciprocal fusion proteins PLZF-RARα and RARα-PLZF. These proteins mediate malignant transformation by binding to and dysregulating RARα/RXR and PLZF target genes, respectively. In order to investigate the molecular basis of PLZF-RARα induced leukemia, we performed a genome wide screen for PLZF-RARα direct target genes using a gain of function model in which PLZF-RARα was expressed in human U937 leukemia cells. Chromatin from U937/PLZF-RARα cells was immunoprecipitated using PLZF antibodies, amplified by ligation-mediated PCR and biological triplicates were hybridized to NimbleGen 2.7kB promoter arrays, which represent 24,659 human promoters. We identified 4916 genes directly bound by PLZF-RARα (2/3 biological replicates, FDR <0.2). These genes were highly enriched for ontological categories including immunity and defense (p<10-6), apoptosis (p<2×10-5), cell cycle (p<10-3) and oncogenesis (p<10-2). Gene expression profiling of U937/PLZF-RARα cells revealed that 34% of direct targets were also transcriptionally regulated in response to PLZF-RARα induction. Despite the established role of PLZF-RARα as a transcriptional repressor, 56% of genes bound by PLZF-RARα were upregulated and 44% repressed. Bioinformatic analysis of PLZF-RARα bound sequences using the MATRIXReduce algorithm identified the ‘-AGGTCA-‘ core sequence as the highest ranked position specific affinity matrix (PSAM). Comparison of this matrix with known transcription factor binding sites from the JASPAR core database revealed high similarity to the recognition sequence for the RAR-related orphan receptor A1 (RORA1) (E value: 5.2×10-3), RORA2 (3.5×10-2) and RXRA-VDR (4.4×10-2). This suggests that the natural binding site of PLZF-RARα is similar to that of other nuclear receptors. The ‘GTCA’ core sequence is frequently observed in canonical retinoic acid receptor response elements and this motif was only associated with genes repressed with binding by PLZF-RARα. Together these results are consistent with the idea that PLZF-RARα acts in large part as a dominant negative retinoic acid receptor. A comparison of genes bound directly by PLZF-RARα with gene expression profiles from 22 APL (4 PLZF-RARα, 18 PML-RARα) and 99 acute myeloid leukemias (AML) selected at random from the Erasmus University dataset, using gene set enrichment analysis, revealed that direct targets of PLZF-RARα were differentially repressed in APL when compared to other forms of AML. Overexpression of PLZF-RARα in murine hematopoietic progenitors and human CD34+ cord blood, blocked myeloid differentiation, an effect associated with the repression of C/EBP genes (α, β and ε), which were identified as direct targets of PLZF-RARα by ChIP-chip. Treatment of primary CD34+ cells with ATRA led to an increase in CEBPα and β, but repression of CEBPε was not relieved. Overexpression of PLZF-RARα in primary murine bone marrow led to an increase in the more primitive Sca1+ population, coincident with increased serial replating ability. Overexpression of PLZF-RARα in mouse and human progenitors led to increased proliferation with more cells in the S and G2/M phases of cell cycle. Correlating with this effect, genes with defined roles in hematopoietic stem cell self-renewal including HOXA9 and MPL were bound and activated by the induction of PLZF-RARα in U937 cells. Increased proliferation was also coincident with repressed expression of Cdkn2d (p19) a cyclin dependent kinase inhibitor, also directly bound by PLZF-RARα. PLZF-RARα appears to transform cells through three interlinked modes of action, inhibition of differentiation by direct repression of key myeloid transcription factors, stimulation of proliferation by repression of a cyclin dependent kinase inhibitor and activation of genes critical for self renewal.


2018 ◽  
Author(s):  
Yoav Lubelsky ◽  
Yosef Shaul

SummeryRFX proteins are a family of conserved DNA binding proteins involved in various, essential cellular and developmental processes. RFX1 is a ubiquitously expressed, dual-activity transcription factor capable of both activation and repression of target genes.The exact mechanism by which RFX1 regulates its target is not known yet. In this work, we show that the C-terminal repression domain of RFX1 interacts with the Serine/Threonine protein phosphatase PP1c, and that interaction with RFX1 can target PP1c to specific sites in the genome. Given that PP1c was shown to de-phosphorylate several transcription factors, as well as the regulatory C-terminal domain of RNA Polymerase II the recruitment of PP1c to promoters may be a mechanism by which RFX1 regulates the target genes.


Author(s):  
Akhil Gargey Iragavarapu ◽  
Liqi Yao ◽  
Vignesh Kasinath

Polycomb repressive complexes are a family of chromatin modifier enzymes which are critical for regulating gene expression and maintaining cell-type identity. The reversible chemical modifications of histone H3 and H2A by the Polycomb proteins are central to its ability to function as a gene silencer. PRC2 is both a reader and writer of the tri-methylation of histone H3 lysine 27 (H3K27me3) which serves as a marker for transcription repression, and heterochromatin boundaries. Over the last few years, several studies have provided key insights into the mechanisms regulating the recruitment and activation of PRC2 at Polycomb target genes. In this review, we highlight the recent structural studies which have elucidated the roles played by Polycomb cofactor proteins in mediating crosstalk between histone post-translational modifications and the recruitment of PRC2 and the stimulation of PRC2 methyltransferase activity.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. e1009592
Author(s):  
Michael Bokros ◽  
Delaney Sherwin ◽  
Marie-Helene Kabbaj ◽  
Yanchang Wang

The spindle assembly checkpoint (SAC) prevents anaphase onset in response to chromosome attachment defects, and SAC silencing is essential for anaphase onset. Following anaphase onset, activated Cdc14 phosphatase dephosphorylates the substrates of cyclin-dependent kinase to facilitate anaphase progression and mitotic exit. In budding yeast, Cdc14 dephosphorylates Fin1, a regulatory subunit of protein phosphatase 1 (PP1), to enable kinetochore localization of Fin1-PP1. We previously showed that kinetochore-localized Fin1-PP1 promotes the removal of the SAC protein Bub1 from the kinetochore during anaphase. We report here that Fin1-PP1 also promotes kinetochore removal of Bub3, the Bub1 partner, but has no effect on another SAC protein Mad1. Moreover, the kinetochore localization of Bub1-Bub3 during anaphase requires Aurora B/Ipl1 kinase activity. We further showed that Fin1-PP1 facilitates the dephosphorylation of kinetochore protein Ndc80, a known Ipl1 substrate. This dephosphorylation reduces kinetochore association of Bub1-Bub3 during anaphase. In addition, we found that untimely Ndc80 dephosphorylation causes viability loss in response to tensionless chromosome attachments. These results suggest that timely localization of Fin1-PP1 to the kinetochore controls the functional window of SAC and is therefore critical for faithful chromosome segregation.


Reproduction ◽  
2017 ◽  
Vol 154 (5) ◽  
pp. 615-625 ◽  
Author(s):  
Cheng Jin ◽  
Yan Zhang ◽  
Zhi-Peng Wang ◽  
Xiu-Xia Wang ◽  
Tie-Cheng Sun ◽  
...  

Spermatogenesis is crucial for male fertility and is therefore tightly controlled by a variety of epigenetic regulators. However, the function of enhancer of zeste homolog 2 (EZH2) in spermatogenesis and the molecular mechanisms underlying its activity remain poorly defined. Here, we demonstrate that deleting EZH2 promoted spermatogonial differentiation and apoptosis. EZH2 is expressed in spermatogonia, spermatocytes and round and elongated spermatids from stage 9 to 11 but not in leptotene and zygotene spermatocytes. Knocking down Ezh2 in vitro using a lentivirus impaired self-renewal in spermatogonial stem cells (SSCs), and the conditional knockout of Ezh2 in spermatogonial progenitors promoted precocious spermatogonial differentiation. EZH2 functions to balance self-renewal and differentiation in spermatogonia by suppressing NEUROG3 and KIT via a direct interaction that is independent of its histone methyltransferase activity. Moreover, deleting Ezh2 enhanced the activation of CASP3 in spermatids, resulting in reduced spermatozoa production. Collectively, these data demonstrate that EZH2 plays a nonclassical role in the regulation of spermatogonial differentiation and apoptosis in murine spermatogenesis.


Sign in / Sign up

Export Citation Format

Share Document