Evaluation of potential applicability of modified solvent deasphalted residue as an asphalt crack sealant

Author(s):  
Jeonghyun Kim ◽  
Haneol Jang ◽  
Namho Kim
2020 ◽  
Vol 63 (5) ◽  
pp. 1618-1635
Author(s):  
Céline Richard ◽  
Mary Lauren Neel ◽  
Arnaud Jeanvoine ◽  
Sharon Mc Connell ◽  
Alison Gehred ◽  
...  

Purpose We sought to critically analyze and evaluate published evidence regarding feasibility and clinical potential for predicting neurodevelopmental outcomes of the frequency-following responses (FFRs) to speech recordings in neonates (birth to 28 days). Method A systematic search of MeSH terms in the Cumulative Index to Nursing and Allied HealthLiterature, Embase, Google Scholar, Ovid Medline (R) and E-Pub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily, Web of Science, SCOPUS, COCHRANE Library, and ClinicalTrials.gov was performed. Manual review of all items identified in the search was performed by two independent reviewers. Articles were evaluated based on the level of methodological quality and evidence according to the RTI item bank. Results Seven articles met inclusion criteria. None of the included studies reported neurodevelopmental outcomes past 3 months of age. Quality of the evidence ranged from moderate to high. Protocol variations were frequent. Conclusions Based on this systematic review, the FFR to speech can capture both temporal and spectral acoustic features in neonates. It can accurately be recorded in a fast and easy manner at the infant's bedside. However, at this time, further studies are needed to identify and validate which FFR features could be incorporated as an addition to standard evaluation of infant sound processing evaluation in subcortico-cortical networks. This review identifies the need for further research focused on identifying specific features of the neonatal FFRs, those with predictive value for early childhood outcomes to help guide targeted early speech and hearing interventions.


2018 ◽  
Vol 5 (2) ◽  
pp. 40-49
Author(s):  
Siew Hong Lam

Abstract Continuing professional development is important for improving and reforming teaching.Classroom observation of others’ teaching has been used for the professional development of eight lecturers from three Myanmar universities who visited the Department of Biological Sciences, National University of Singapore over a period of three weeks.To bridge the socio-cultural and educational background differences, Gagné’s ‘Nine events of instruction’ was used as a pedagogical framework to guide and evaluate the classroom observation and learning as it is well-established for instructional design and resonate well with educators.This study aimed to evaluate the participants’ abilities and their learning through classroom observation based on their perceptions of the ‘nine events of instruction’.The study found that most of the participants have positive views of their abilities in relation to the ‘nine events’, especially in practicing the early events of instruction. The classroom observation has benefitted them with respect to the ‘nine events’, particularly ‘Informing the Students of the Objective/Outcome’, ‘Stimulating Recall of the Prior Knowledge’ and ‘Presenting Information/Content/Stimulus’.Notably, ‘Assessing Performance’ was the most perceived ‘event of instruction’ that the participants wanted to improve on and that the participants perceived will benefit Myanmar lecturers the most.Qualitative feedbacks by the participants revealed lessons learned, their potential applicability and desires to reform and share.The study further demonstrated that the ‘nine events of instruction’ is a useful pedagogical framework for guiding and evaluating perception of abilities and learning in classroom instruction and observation for continuing professional development in a cross-cultural context.


Author(s):  
Giulia Sajeva

The conservation of environment and the protection of human rights are two of the most compelling needs of our time. Unfortunately, they are not always easy to combine and too often result in mutual harm. This book analyses the idea of biocultural rights as a proposal for harmonizing the needs of environmental and human rights. These rights, considered as a basket of group rights, are those deemed necessary to protect the stewardship role that certain indigenous peoples and local communities have played towards the environment. With a view to understanding the value and merits, as well as the threats that biocultural rights entail, the book critically assesses their foundations, content, and implications, and develops new perspectives and ideas concerning their potential applicability for promoting the socio-economic interests of indigenous people and local communities. It further explores the controversial relationship of interdependence and conflict between conservation of environment and protection of human rights.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1108
Author(s):  
Manuela Curcio ◽  
Alessandro Paolì ◽  
Giuseppe Cirillo ◽  
Sebastiano Di Pietro ◽  
Martina Forestiero ◽  
...  

Nanoparticles with active-targeting and stimuli-responsive behavior are a promising class of engineered materials able to recognize the site of cancer disease, targeting the drug release and limiting side effects in the healthy organs. In this work, new dual pH/redox-responsive nanoparticles with affinity for folate receptors were prepared by the combination of two amphiphilic dextran (DEX) derivatives. DEXFA conjugate was obtained by covalent coupling of the polysaccharide with folic acid (FA), whereas DEXssPEGCOOH derived from a reductive amination step of DEX was followed by condensation with polyethylene glycol 600. After self-assembling, nanoparticles with a mean size of 50 nm, able to be destabilized in acidic pH and reducing media, were obtained. Doxorubicin was loaded during the self-assembling process, and the release experiments showed the ability of the proposed system to modulate the drug release in response to different pH and redox conditions. Finally, the viability and uptake experiments on healthy (MCF-10A) and metastatic cancer (MDA-MB-231) cells proved the potential applicability of the proposed system as a new drug vector in cancer therapy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pengcheng Zhang ◽  
Sifan Chen ◽  
Changjia Zhu ◽  
Linxiao Hou ◽  
Weipeng Xian ◽  
...  

AbstractThermal sensation, which is the conversion of a temperature stimulus into a biological response, is the basis of the fundamental physiological processes that occur ubiquitously in all organisms from bacteria to mammals. Significant efforts have been devoted to fabricating artificial membranes that can mimic the delicate functions of nature; however, the design of a bionic thermometer remains in its infancy. Herein, we report a nanofluidic membrane based on an ionic covalent organic framework (COF) that is capable of intelligently monitoring temperature variations and expressing it in the form of continuous potential differences. The high density of the charged sites present in the sub-nanochannels renders superior permselectivity to the resulting nanofluidic system, leading to a high thermosensation sensitivity of 1.27 mV K−1, thereby outperforming any known natural system. The potential applicability of the developed system is illustrated by its excellent tolerance toward a broad range of salt concentrations, wide working temperatures, synchronous response to temperature stimulation, and long-term ultrastability. Therefore, our study pioneers a way to explore COFs for mimicking the sophisticated signaling system observed in the nature.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
María Taeño ◽  
David Maestre ◽  
Ana Cremades

Abstract Nickel oxide (NiO) is one of the very few p-type semiconducting oxides, the study of which is gaining increasing attention in recent years due to its potential applicability in many emerging fields of technological research. Actually, a growing number of scientific works focus on NiO-based electrochromic devices, high-frequency spintronics, fuel cell electrodes, supercapacitors, photocatalyst, chemical/gas sensors, or magnetic devices, among others. However, less has been done so far in the development of NiO-based optical devices, a field in which this versatile transition metal oxide still lags in performance despite its potential applicability. This review could contribute with novelty and new forefront insights on NiO micro and nanostructures with promising applicability in optical and optoelectronic devices. As some examples, NiO lighting devices, optical microresonators, waveguides, optical limiters, and neuromorphic applications are reviewed and analyzed in this work. These emerging functionalities, together with some other recent developments based on NiO micro and nanostructures, can open a new field of research based on this p-type material which still remains scarcely explored from an optical perspective, and would pave the way to future research and scientific advances.


2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Junpeng Li ◽  
Shuping Hu ◽  
Wei Jian ◽  
Chengjian Xie ◽  
Xingyong Yang

AbstractAntimicrobial peptides (AMPs) are a class of short, usually positively charged polypeptides that exist in humans, animals, and plants. Considering the increasing number of drug-resistant pathogens, the antimicrobial activity of AMPs has attracted much attention. AMPs with broad-spectrum antimicrobial activity against many gram-positive bacteria, gram-negative bacteria, and fungi are an important defensive barrier against pathogens for many organisms. With continuing research, many other physiological functions of plant AMPs have been found in addition to their antimicrobial roles, such as regulating plant growth and development and treating many diseases with high efficacy. The potential applicability of plant AMPs in agricultural production, as food additives and disease treatments, has garnered much interest. This review focuses on the types of plant AMPs, their mechanisms of action, the parameters affecting the antimicrobial activities of AMPs, and their potential applications in agricultural production, the food industry, breeding industry, and medical field.


Diversity ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 13
Author(s):  
Thomas H. White ◽  
Wilfredo Abreu ◽  
Gabriel Benitez ◽  
Arelis Jhonson ◽  
Marisel Lopez ◽  
...  

The family Psittacidae is comprised of over 400 species, an ever-increasing number of which are considered threatened with extinction. In recent decades, conservation strategies for these species have increasingly employed reintroduction as a technique for reestablishing populations in previously extirpated areas. Because most Psittacines are highly social and flocking species, reintroduction efforts may face the numerical and methodological challenge of overcoming initial Allee effects during the critical establishment phase of the reintroduction. These Allee effects can result from failures to achieve adequate site fidelity, survival and flock cohesion of released individuals, thus jeopardizing the success of the reintroduction. Over the past 20 years, efforts to reestablish and augment populations of the critically endangered Puerto Rican parrot (Amazona vittata) have periodically faced the challenge of apparent Allee effects. These challenges have been mitigated via a novel release strategy designed to promote site fidelity, flock cohesion and rapid reproduction of released parrots. Efforts to date have resulted in not only the reestablishment of an additional wild population in Puerto Rico, but also the reestablishment of the species in the El Yunque National Forest following its extirpation there by the Category 5 hurricane Maria in 2017. This promising release strategy has potential applicability in reintroductions of other psittacines and highly social species in general.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 929
Author(s):  
Andreas Hahn ◽  
Hagen Frickmann ◽  
Ulrike Loderstädt

Prescribed antibiotic treatments which do not match the therapeutic requirements of potentially co-existing undetected sexually transmitted infections (STIs) can facilitate the selection of antibiotic-drug-resistant clones. To reduce this risk, this modelling assessed the potential applicability of reliable rapid molecular test assays targeting bacterial STI prior to the prescription of antibiotic drugs. The modelling was based on the prevalence of three bacterial STIs in German heterosexual and men-having-sex-with-men (MSM) populations, as well as on reported test characteristics of respective assays. In the case of the application of rapid molecular STI assays for screening, the numbers needed to test in order to correctly identify any of the included bacterial STIs ranged from 103 to 104 for the heterosexual population and from 5 to 14 for the MSM population. The number needed to harm—defined as getting a false negative result for any of the STIs and a false positive signal for another one, potentially leading to an even more inappropriate adaptation of antibiotic therapy than without any STI screening—was at least 208,995 for the heterosexuals and 16,977 for the MSM. Therefore, the screening approach may indeed be suitable to avoid unnecessary selective pressure on bacterial causes of sexually transmitted infections.


2021 ◽  
Vol 14 (2) ◽  
pp. 95
Author(s):  
Jacob Kosyakovsky ◽  
Jared Fine ◽  
William Frey ◽  
Leah Hanson

Identifying disease-modifying therapies for neurological diseases remains one of the greatest gaps in modern medicine. Herein, we present the rationale for intranasal (IN) delivery of deferoxamine (DFO), a high-affinity iron chelator, as a treatment for neurodegenerative and neurovascular disease with a focus on its novel mechanisms. Brain iron dyshomeostasis with iron accumulation is a known feature of brain aging and is implicated in the pathogenesis of a number of neurological diseases. A substantial body of preclinical evidence and early clinical data has demonstrated that IN DFO and other iron chelators have strong disease-modifying impacts in Alzheimer’s disease (AD), Parkinson’s disease (PD), ischemic stroke, and intracranial hemorrhage (ICH). Acting by the disease-nonspecific pathway of iron chelation, DFO targets each of these complex diseases via multifactorial mechanisms. Accumulating lines of evidence suggest further mechanisms by which IN DFO may also be beneficial in cognitive aging, multiple sclerosis, traumatic brain injury, other neurodegenerative diseases, and vascular dementia. Considering its known safety profile, targeted delivery method, robust preclinical efficacy, multiple mechanisms, and potential applicability across many neurological diseases, the case for further development of IN DFO is considerable.


Sign in / Sign up

Export Citation Format

Share Document