Rhapontigenin fromRheum undulatumProtects Against Oxidative-Stress-Induced Cell Damage Through Antioxidant Activity

2007 ◽  
Vol 70 (13) ◽  
pp. 1155-1166 ◽  
Author(s):  
Rui Zhang ◽  
Kyoung Ah Kang ◽  
Mei Jing Piao ◽  
Kyoung Hwa Lee ◽  
Hye Suk Jang ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ke-Xin Zhang ◽  
Jian-Bin Tan ◽  
Cheng-Liang Xie ◽  
Rong-Bo Zheng ◽  
Xiao-Dan Huang ◽  
...  

Herbal tea with antioxidant ingredients has gained increasing attention in the field of functional foods due to their amelioration potential in aging-related diseases. Wanglaoji herbal tea (WHT) is a kind of traditional beverage made from herbal materials. This study was performed to investigate its antioxidant activity and identify its protective effect on a H2O2-induced cell damage model. In this study, we identified six kinds of phenolic acids with antioxidant activity in WHT, among which rosmarinic acid had the highest content and the highest contribution ratio to the antioxidant activity of WHT. Moreover, compared with the H2O2-induced damage group, the WHT treatment group can significantly increase the viability of cells and decrease the ratio of senescence-associated β-galactosidase-positive cells, intracellular malondialdehyde levels, and the percentage of G1 phase. Furthermore, enrichment analysis of differentially expressed genes revealed that heme oxygenase1 (HMOX1) was a key gene for protective effect of WHT on oxidative stress-induced cell damage. Thus, WHT exerted protective effects not only by scavenging reactive oxygen species but also by inducing the expression of cytoprotective genes by activating the HMOX1 pathway, which showed that WHT had a potential of promoting health by reducing oxidative stress-induced cell damage.


JURNAL PANGAN ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 11-22
Author(s):  
Arfina Sukmawati Arifin

The high number of free radicals that are not balanced with the amount of antioxidants in the body triggers oxidative stress. Oxidative stress causes impaired vascular function, damage to proteins and lipids in membrane cell, and nucleic acid (DNA) mutations. Chronic cell damage has a negative effect on tissue that triggers various diseases such as neurodegenerative diseases (Alzheimer's, Parkinson's), cardiovascular diseases (hypertension, arteriosclerosis, and others), cataracts, retinal damage, maculopathy, rheumatoid arthritis, asthma, stroke, diabetes mellitus , immunodepression, cancer, aging, hyperoxia, dermatitis, and others. The application of a healthy lifestyle for example by consuming food sources of bioactive compounds can minimize health risks. Rice is the staple food of the Indonesian people. Some types of rice contain red and black pigments which are known to have high antioxidant activity compared to white rice. The pigment comes from anthocyanin and proanthocyanidin. Various studies in vitro and in vivo prove that anthocyanin and proantocyanidine act as antioxidants and potency as a preventative for various diseases such as cardiovascular, diabetes mellitus, and etc.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
G. Wardani ◽  
Ernawati ◽  
K. Eraiko ◽  
S. A. Sudjarwo

Lead is one of the heavy metals with oxidative stress that causes toxicity in human and animals. The aim of this study was to evaluate the antioxidant activity of Chitosan-Pinus merkusii extract nanoparticle on lead acetate-induced toxicity in rat pancreas. Chitosan-Pinus merkusii nanoparticles were identified by Particle Size Analysis (PSA) and Scanning Electron Microscope (SEM). The male rats used were divided into a control group (treated with distilled water), lead acetate group (injected with lead acetate at 20 mg/kg BW i.p), and the treatment group (treated orally with Chitosan-Pinus merkusii nanoparticle at 150 mg; 300 mg; 600 mg/kg BW and injected with lead acetate at 20 mg/kg BW i.p). Blood samples were taken to measure glucose and insulin level. The pancreas tissues were also collected to evaluate the malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), and histological evaluations of cell damage. The PSA showed that the size of Chitosan-Pinus merkusii nanoparticle was 530.2 ± 38.27 nm. The SEM images revealed an irregular shape, and the morphology showed a rough surface. Administration of lead acetate resulted in a significant increase in glucose and MDA levels as well as a decrease in the level of insulin, SOD and GPx when compared with the control group, while that of 600 mg/kg BW of Chitosan-Pinus merkusii nanoparticle gave a polar result. The lead acetate induced loss of pancreatic cells normal structure and necrosis, while Chitosan-Pinus merkusii nanoparticle inhibited it. It could be concluded that Chitosan-Pinus merkusii nanoparticle has a potential to be a powerful agent and may be useful as an antioxidant against free radical-induced oxidative stress and pancreatic cell damage mediated by lead acetate intoxication.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1146 ◽  
Author(s):  
Ahmad Alkhatib ◽  
Wen-Hsin Feng ◽  
Yi-Jen Huang ◽  
Chia-Hua Kuo ◽  
Chien-Wen Hou

The study tested whether anserine (beta-alanyl-3-methyl-l-histidine), the active ingredient of chicken essence affects exercise-induced oxidative stress, cell integrity, and haematology biomarkers. In a randomized placebo-controlled repeated-measures design, ten healthy men ingested anserine in either a low dose (ANS-LD) 15 mg·kg−1·bw−1, high dose (ANS-HD) 30 mg·kg−1·bw−1, or placebo (PLA), following an exercise challenge (time to exhaustion), on three separate occasions. Anserine supplementation increased superoxide dismutase (SOD) by 50% (p < 0.001, effect size d = 0.8 for both ANS-LD and ANS-HD), and preserved catalase (CAT) activity suggesting an improved antioxidant activity. However, both ANS-LD and ANS-HD elevated glutathione disulfide (GSSG), (both p < 0.001, main treatment effect), and consequently lowered the glutathione to glutathione disulfide (GSH/GSSG) ratio compared with PLA (p < 0.01, main treatment effect), without significant effects on thiobarbituric acid active reactive substances (TBARS). Exercise-induced cell damage biomarkers of glutamic-oxaloacetic transaminase (GOT) and myoglobin were unaffected by anserine. There were slight but significant elevations in glutamate pyruvate transaminase (GPT) and creatine kinase isoenzyme (CKMB), especially in ANS-HD (p < 0.05) compared with ANS-LD or PLA. Haematological biomarkers were largely unaffected by anserine, its dose, and without interaction with post exercise time-course. However, compared with ANS-LD and PLA, ANS-HD increased the mean cell volume (MCV), and decreased the mean corpuscular haemoglobin concentration (MCHC) (p < 0.001). Anserine preserves cellular homoeostasis through enhanced antioxidant activity and protects cell integrity in healthy men, which is important for chronic disease prevention. However, anserine temporal elevated exercise-induced cell-damage, together with enhanced antioxidant activity and haematological responses suggest an augmented exercise-induced adaptative response and recovery.


2018 ◽  
Vol 7 (2) ◽  
pp. 149
Author(s):  
Aliefia Meta Duwairoh

The popularity of E-Cigarette has increased significantly over the last decade, and has potential to replace tobacco cigarettes. Aerosol which is produced by E-Cigarette, contains reactive carbonyl and free radicals, inducing oxidative stress and causing inflammation, proliferation, and cell damage. This oxidative stress can be seen through the Malondialdehyde (MDA) levels in the body, and reduced by antioxidant activity in Solo Garlic extract. The aim of this study is analyzing the differences of MDA levels in four treatment groups. 28 white rats were divided into four groups and three of them were exposured by E-Cigarette. This study showed that the highest MDA levels was found in the group which was exposured by E-Cigarette without solo garlic extract (7,179 nmol/ml). MDA levels can be reduced by antioxidant activity shown in the group which was exposured by E-Cigarette and solo garlic extract dose 0,05 gram/day (the smallest dose), amount 3,715 nmol/ml. The average of MDA levels in group which was given by the smallest dose of solo garlic extract, is lower than the control group. So, it can be concluded that using solo garlic extract less than 0,05 gram/day can restore MDA levels to a normal state (4,210 nmol/ml).


2018 ◽  
Vol 24 (1) ◽  
pp. 53-59
Author(s):  
Jong Min Kim ◽  
Seon Kyeong Park ◽  
Jin Yong Kang ◽  
Seong-kyeong Bae ◽  
Ga-Hee Jeong ◽  
...  

2020 ◽  
Vol 5 (2) ◽  
pp. 250-257
Author(s):  
Nurul Fatimah ◽  
◽  
Reksi Sundu

Free radicals and reactive species are widely believed to contribute to the development of several diseases by causing oxidative stress and eventually oxidative. Vernonia amygdalina (Astereacea) is a small shrub or tree between 1 and 5m high growing throughout tropical Africa. Plants are generally known as bitter leaves is well cultivated and is a general market for merchandise in several countries. The purpose of this study was to determine the antioxidant activity of hexane fraction from ethanol extract od Frican leaves (Vernonia amygdalina Del.). The method used in this study was the DPPH (1,1-Diphenil-2-Picrylhydrazyl) method. The result of phytochemical screening showed that ethanolic extract of African leaves contained a composition of secondary metabolites of alkaloids, flavonoids, tannins, steroids/triterpenoids and saponins. The antioxidant activity of the extract of n-hexane fraction was classified as very weak with an IC50 value of 317.98 ppm.


2018 ◽  
Vol 21 (8) ◽  
pp. 571-582 ◽  
Author(s):  
Juxiang Liu ◽  
Lianli Zhang ◽  
Dan Liu ◽  
Baocai Li ◽  
Mi Zhang

Aim & Objectives: Curcuminoids are characteristic constituents in Curcuma, displaying obviously neuroprotective activities against oxidative stress. As one of the Traditional Chinese Medicines from Curcuma, the radix of Curcuma aromatica is also rich in those chemicals, but its neuroprotective activity and mechanism remain unknown. The aim of the current study is to evaluate the neuroprotective effects of extracts from the radix of C. aromatica (ECAs) on H2O2-damaged PC12 cells. Material and Methods: The model of oxidative stress damage was established by treatment of 400 µM H2O2 on PC12 to induce cell damage. After the treatment of ECWs for 24 h, the cell viability, LDH, SOD, CAT and GSH were measured to evaluate the neuroprotection of ECAs on that model. The potential action mechanism was studied by measurement of level of ROS, cell apoptosis rate, mitochondrial membrane potential (MMP), morphologic change, the intracellular Ca2+ content (F340/F380) and the expressions of Bcl-2, Bax and Caspase-3. Additionally, the constituents from tested extracts were analyzed by HPLC-DAD-Q-TOF-MS method. Results: Compared with a positive control, Vitamin E, 10 µg/ml of 95% EtOH extract (HCECA) and 75% EtOH extract (MCECA) can markedly increase the rate of cell survival and enhance the antioxidant enzyme activities of SOD, CAT, increase the levels of GSH, decrease LDH release and the level of ROS, attenuate the intracellular Ca2+ overloading, reduce the cell apoptotic rate and stabilize MMP, down-regulate Bcl-2 expression, up-regulate Bax and caspase-3 expression, and improve the change of cell morphology. The chemical analysis showed that diarylheptanoids and sesquiterpenoids are the major chemicals in tested extracts and the former were richer in HCECA and MCECA than others. Conclusions: These findings indicated that the effects of HCECA and MCECA on inhibiting the cells damage induced by H2O2 in PC12 are better than other extracts from the radix of C. aromatica, and the active constituents with neuroprotective effects consisting in those two active extracts are diarylheptanoids.


2020 ◽  
Vol 21 (12) ◽  
pp. 1216-1224
Author(s):  
Fatemeh Forouzanfar ◽  
Samira Asgharzade

Noise exposure (NE) has been recognized as one of the causes of sensorineural hearing loss (SNHL), which can bring about irreversible damage to sensory hair cells in the cochlea, through the launch of oxidative stress pathways and inflammation. Accordingly, determining the molecular mechanism involved in regulating hair cell apoptosis via NE is essential to prevent hair cell damage. However, the role of microRNAs (miRNAs) in the degeneration of sensory cells of the cochlea during NE has not been so far uncovered. Thus, the main purpose of this study was to demonstrate the regulatory role of miRNAs in the oxidative stress pathway and inflammation induced by NE. In this respect, articles related to noise-induced hearing loss (NIHL), oxidative stress, inflammation, and miRNA from various databases of Directory of Open Access Journals (DOAJ), Google Scholar, PubMed; Library, Information Science & Technology Abstracts (LISTA), and Web of Science were searched and retrieved. The findings revealed that several studies had suggested that up-regulation of miR-1229-5p, miR-451a, 185-5p, 186 and down-regulation of miRNA-96/182/183 and miR-30b were involved in oxidative stress and inflammation which could be used as biomarkers for NIHL. There was also a close relationship between NIHL and miRNAs, but further research is required to prove a causal association between miRNA alterations and NE, and also to determine miRNAs as biomarkers indicating responses to NE.


Sign in / Sign up

Export Citation Format

Share Document