Pt/Au Schottky Contacts to Modulation-Doped Al x Ga 1- x N/GaN Heterostructures Using Pre-deposition Surface Treatment

2002 ◽  
Vol 19 (12) ◽  
pp. 1853-1855
Author(s):  
Liu Jie ◽  
Shen Bo ◽  
Wang Mao-Jun ◽  
Zhou Yu-Gang ◽  
Zheng Ze-Wei ◽  
...  
2014 ◽  
Vol 492 ◽  
pp. 331-334
Author(s):  
Qian Feng ◽  
Kai Du ◽  
Yu Kun Li ◽  
Peng Shi ◽  
Qing Feng

We developed heterojunction-based Schottky solar cells consisting of π-conjugated polymers and n-type GaN. PEDOT: PSS was used as the transparent Schottky contact material. In order to improve the performance of solar cells, the effects of surface treatment on the electrical performance of PEDOT: PSS/n-GaN Schottky contacts were investigated. The Voc increased from 0.52V to 0.62V,0.54V and 0.54V and Isc from 0.33 mA/cm2 to 0.45mA/cm2,0.40mA/cm2 and 0.35mA/cm2 after HCl, HF solution and oxygen plasma treatments. The I-V and the XPS measurements indicated that the barrier height of PEDOT:PSS/n-GaN was increased from 0.62eV to 0.76eV, 0.72eV and 0.70eV and the ideality factor improved from 1.81 to 1.63, 1.67 and 1.73 respectively, which induced the variation of the solar cells characteristics..


2009 ◽  
Vol 518 (4) ◽  
pp. 1103-1108 ◽  
Author(s):  
I. Fasaki ◽  
I. Hotovy ◽  
A. Rehakova ◽  
J. Hotovy ◽  
V. Rehacek ◽  
...  

Author(s):  
Z. Liliental-Weber ◽  
C. Nelson ◽  
R. Ludeke ◽  
R. Gronsky ◽  
J. Washburn

The properties of metal/semiconductor interfaces have received considerable attention over the past few years, and the Al/GaAs system is of special interest because of its potential use in high-speed logic integrated optics, and microwave applications. For such materials a detailed knowledge of the geometric and electronic structure of the interface is fundamental to an understanding of the electrical properties of the contact. It is well known that the properties of Schottky contacts are established within a few atomic layers of the deposited metal. Therefore surface contamination can play a significant role. A method for fabricating contamination-free interfaces is absolutely necessary for reproducible properties, and molecularbeam epitaxy (MBE) offers such advantages for in-situ metal deposition under UHV conditions


Author(s):  
Yih-Cheng Shih ◽  
E. L. Wilkie

Tungsten silicides (WSix) have been successfully used as the gate materials in self-aligned GaAs metal-semiconductor-field- effect transistors (MESFET). Thermal stability of the WSix/GaAs Schottky contact is of major concern since the n+ implanted source/drain regions must be annealed at high temperatures (∼ 800°C). WSi0.6 was considered the best composition to achieve good device performance due to its low stress and excellent thermal stability of the WSix/GaAs interface. The film adhesion and the uniformity in barrier heights and ideality factors of the WSi0.6 films have been improved by depositing a thin layer of pure W as the first layer on GaAs prior to WSi0.6 deposition. Recently WSi0.1 has been used successfully as the gate material in 1x10 μm GaAs FET's on the GaAs substrates which were sputter-cleaned prior to deposition. These GaAs FET's exhibited uniform threshold voltages across a 51 mm wafer with good film adhesion after annealing at 800°C for 10 min.


1976 ◽  
Vol 36 (02) ◽  
pp. 430-440 ◽  
Author(s):  
A Marmur ◽  
E Ruckenstein ◽  
S. R Rakower

SummaryA model is suggested which assumes that the rate of deposition of cells is determined both by hydrodynamic factors and by Brownian motion over the potential barrier caused by London and double-layer forces in the immediate vicinity of the deposition surface. The height of the barrier in the potential energy of interaction between blood cells and various surfaces is analyzed in relation to the physical properties of the cells, surfaces, and solutions. Based on this analysis, the adhesion of platelets to injured blood vessel walls and to non-biologic materials, the lack of adhesion of red blood cells under the same conditions, the mechanism of ADP induced aggregation and the interaction with blood flow are explained. The qualitative predictions of the model are substantiated by available experimental information. Quantitative results are presented in terms of a time constant, which typifies a period of contact with a surface, during which appreciable deposition occurs.


2020 ◽  
Vol 9 (4) ◽  
pp. e27942662
Author(s):  
Patrícia Capellato ◽  
Cláudia Eliana Bruno Marino ◽  
Gilbert Silva ◽  
Lucas Victor Benjamim Vasconcelos ◽  
Rodrigo Perito Cardoso ◽  
...  

During the last decades, researchers have been growing the interest in surface treatment with an antimicrobial agent. Silver nanoparticles (AgNPs) are widely used in biomedical fields due to their potent antimicrobial activity. So, in this study was investigated silver particles (isles) coated on titanium surface for dental and orthopedic application. Silver particles coating process on titanium surface were performed via sputtering that is a plasma-assisted deposition technique with and titanium without treatment was applied as comparing standard. Plasma treatment parameters were optimized so that the result was not a thin film of Ag but dispersed particles of Ag on the Ti-cp surface. The alloy surfaces were investigated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). In order to investigate antibacterial potential Staphylococcus aureus and Escherichia coli have been used at Agar diffusion assay. The results were analyzed by analysis of variance (ANOVA) in order to verify significant difference antimicrobial activity between samples that have shown no difference between the surfaces studied treatments. For silver deposition scattered particles (isles) over titanium surface for a 10-minute treatment, EDS revealed by silver clusters that the particles were not properly scattered onto surface, hence, the low effectiveness in antibacterial activity.


2013 ◽  
Vol 51 (10) ◽  
pp. 735-741
Author(s):  
Dong-Yong Kim ◽  
Eun-Wook Jeong ◽  
Kwun Nam Hui ◽  
Youngson Choe ◽  
Jung-Ho Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document