An original piecewise model for computing energy expenditure from accelerometer and heart rate signals

2017 ◽  
Vol 38 (8) ◽  
pp. 1599-1615 ◽  
Author(s):  
Hector M Romero-Ugalde ◽  
M Garnotel ◽  
M Doron ◽  
P Jallon ◽  
G Charpentier ◽  
...  
1975 ◽  
Vol 53 (6) ◽  
pp. 679-685 ◽  
Author(s):  
J. B. Holter ◽  
W. E. Urban Jr. ◽  
H. H. Hayes ◽  
H. Silver ◽  
H. R. Skutt

Six adult white-tailed deer (Odocoileus virginianus borealis) were exposed to 165 periods of 12 consecutive hours of controlled constant ambient temperature in an indirect respiration calorimeter. Temperatures among periods varied from 38 to 0 (summer) or to −20C (fall, winter, spring). Traits measured were energy expenditure (metabolic rate), proportion of time spent standing, heart rate, and body temperature, the latter two using telemetry. The deer used body posture extensively as a means of maintaining body energy equilibrium. Energy expenditure was increased at low ambient temperature to combat cold and to maintain relatively constant body temperature. Changes in heart rate paralleled changes in energy expenditure. In a limited number of comparisons, slight wind chill was combatted through behavioral means with no effect on energy expenditure. The reaction of deer to varying ambient temperatures was not the same in all seasons of the year.


2017 ◽  
Vol 27 (5) ◽  
pp. 467-474 ◽  
Author(s):  
Jorge Cañete García-Prieto ◽  
Vicente Martinez-Vizcaino ◽  
Antonio García-Hermoso ◽  
Mairena Sánchez-López ◽  
Natalia Arias-Palencia ◽  
...  

The aim of this study was to examine the energy expenditure (EE) measured using indirect calorimetry (IC) during playground games and to assess the validity of heart rate (HR) and accelerometry counts as indirect indicators of EE in children´s physical activity games. 32 primary school children (9.9 ± 0.6 years old, 19.8 ± 4.9 kg · m-2 BMI and 37.6 ± 7.2 ml · kg-1 · min-1 VO2max). Indirect calorimetry (IC), accelerometry and HR data were simultaneously collected for each child during a 90 min session of 30 playground games. Thirty-eight sessions were recorded in 32 different children. Each game was recorded at least in three occasions in other three children. The intersubject coefficient of variation within a game was 27% for IC, 37% for accelerometry and 13% for HR. The overall mean EE in the games was 4.2 ± 1.4 kcals · min-1 per game, totaling to 375 ± 122 kcals/per 90 min/session. The correlation coefficient between indirect calorimetry and accelerometer counts was 0.48 (p = .026) for endurance games and 0.21 (p = .574) for strength games. The correlation coefficient between indirect calorimetry and HR was 0.71 (p = .032) for endurance games and 0.48 (p = .026) for strength games. Our data indicate that both accelerometer and HR monitors are useful devices for estimating EE during endurance games, but only HR monitors estimates are accurate for endurance games.


2008 ◽  
Vol 33 (6) ◽  
pp. 1213-1222 ◽  
Author(s):  
Dean Charles Hay ◽  
Akinobu Wakayama ◽  
Ken Sakamura ◽  
Senshi Fukashiro

Estimation of energy expenditure in daily living conditions can be a tool for clinical assessment of health status, as well as a self-measure of lifestyle and general activity levels. Criterion measures are either prohibitively expensive or restricted to laboratory settings. Portable devices (heart rate monitors, pedometers) have gained recent popularity, but accuracy of the prediction equations remains questionable. This study applied an artificial neural network modeling approach to the problem of estimating energy expenditure with different dynamic inputs (accelerometry, heart rate above resting (HRar), and electromyography (EMG)). Nine feed-forward back-propagation models were trained, with the goal of minimizing the mean squared error (MSE) of the training datasets. Model 1 (accelerometry only) and model 2 (HRar only) performed poorly and had significantly greater MSE than all other models (p < 0.001). Model 3 (combined accelerometry and HRar) had overall performance similar to EMG models. Validation of all models was performed by simulating untrained datasets. MSE of all models increased when tested with validation data. While models 1 and 2 again performed poorly, model 3 MSE was lower than all but 2 EMG models. Squared correlation coefficients of measured and predicted energy expenditure for models 3 to 9 ranged from 0.745 to 0.817. Analysis of mean error within specific movement categories indicates that EMG models may be better at predicting higher-intensity energy expenditure, but combined accelerometry and HRar provides an economical solution, with sufficient accuracy.


2002 ◽  
Vol 139 (1) ◽  
pp. 87-93 ◽  
Author(s):  
A. K. SHINDE ◽  
RAGHAVENDRA BHATTA ◽  
S. K. SANKHYAN ◽  
D. L. VERMA

A study of the physiological responses and energy expenditure of goats was carried out from June 1999 to May 2000 by conducting two experiments: one on bucks maintained on stall feeding in autumn 1999 (Expt 1) followed by year-round grazing on native ranges over three seasons: monsoon, winter and summer (Expt 2). Physiological responses and energy expenditure (EE) measurements of housed and grazing goats were recorded at 06.00 h and 14.00 h for 5 consecutive days in each season. Goats were fixed with a face mask and meteorological balloon for collection of expired air and measurement of EE. Respiration rate (RR) at 06.00 h was similar in all seasons (14 respiration/min) except in the monsoon, where a significantly (P<0.05) higher value (26 respiration/min) was recorded. At 14.00 h, RR was higher in monsoon and summer (81 and 91 respiration/min) than in winter (52 respiration/min). Irrespective of the season, heart rate (HR) was higher at 14.00 h (86 beat/min) than at 06.00 h (64 beat/min). The rise of rectal temperature (RT) from morning (06.00 h) to peak daily temperature (14.00 h) was 0.9 °C in housed goats in autumn and 1.0, 2.1 and 2.0 °C in grazing goats during monsoon, winter and summer, respectively. The mean value was 1.7 °C. Skin temperature (ST) was lowest in winter (30.1 °C) and highest at 14.00 h in summer (40.3 °C). Energy expenditure of goats at 06.00 h was 32.7 W in winter and significantly (P<0.05) increased to 52.0 W in summer and 107.8 W in monsoon. At 14.00 h, EE was 140.2 W in winter and increased to 389.0 W and 391.3 W respectively in monsoon and summer. It is concluded that monsoon and summer are both stressful seasons in semi-arid regions. Animals should be protected from direct solar radiation during the hottest hours of the day to ameliorate the effect of heat stress.


2014 ◽  
Vol 39 (3) ◽  
pp. 324-328 ◽  
Author(s):  
Raffaele Milia ◽  
Silvana Roberto ◽  
Marco Pinna ◽  
Girolamo Palazzolo ◽  
Irene Sanna ◽  
...  

Fencing is an Olympic sport in which athletes fight one against one using bladed weapons. Contests consist of three 3-min bouts, with rest intervals of 1 min between them. No studies investigating oxygen uptake and energetic demand during fencing competitions exist, thus energetic expenditure and demand in this sport remain speculative. The aim of this study was to understand the physiological capacities underlying fencing performance. Aerobic energy expenditure and the recruitment of lactic anaerobic metabolism were determined in 15 athletes (2 females and 13 males) during a simulation of fencing by using a portable gas analyzer (MedGraphics VO2000), which was able to provide data on oxygen uptake, carbon dioxide production and heart rate. Blood lactate was assessed by means of a portable lactate analyzer. Average group energetic expenditure during the simulation was (mean ± SD) 10.24 ± 0.65 kcal·min−1, corresponding to 8.6 ± 0.54 METs. Oxygen uptakeand heart rate were always below the level of anaerobic threshold previously assessed during the preliminary incremental test, while blood lactate reached its maximum value of 6.9 ± 2.1 mmol·L−1 during the final recovery minute between rounds. Present data suggest that physical demand in fencing is moderate for skilled fencers and that both aerobic energy metabolism and anaerobic lactic energy sources are moderately recruited. This should be considered by coaches when preparing training programs for athletes.


2017 ◽  
Vol 12 (4) ◽  
pp. 504-513 ◽  
Author(s):  
Charles-Mathieu Lachaume ◽  
François Trudeau ◽  
Jean Lemoyne

The purpose of this study was to investigate the energy expenditure and heart rate responses elicited in elite male midget ice hockey players during small-sided games. Nine players (aged 15.89 ± 0.33 years) participated in the study. Maximal progressive treadmill testing in the laboratory measured the relationship of oxygen consumption ([Formula: see text]) to heart rate before on-ice assessments of heart rate during six different small-sided games: 1v1, 2v2, 2v2 with support player, 3v3 with support player, 3v3 with transitions, and 4v4 with two support players. Heart rate was recorded continuously in each game. 3v3 T small-sided game was the most intense for all four intensity markers. All six small-sided games reached 89% HRmax or more with heart rate peaks in active effort repetition. These findings demonstrate that such small-sided games are considered as high intensity games and are an effective training method for ice hockey players.


Author(s):  
Guy Hajj-Boutros ◽  
Marie-Anne Landry-Duval ◽  
Alain Steve Comtois ◽  
Gilles Gouspillou ◽  
Antony D. Karelis

Author(s):  
Andrew N. Bosch ◽  
Kirsten C. Flanagan ◽  
Maaike M. Eken ◽  
Adrian Withers ◽  
Jana Burger ◽  
...  

Elliptical trainers and steppers are proposed as useful exercise modalities in the rehabilitation of injured runners due to the reduced stress on muscles and joints when compared to running. This study compared the physiological responses to submaximal running (treadmill) with exercise on the elliptical trainer and stepper devices at three submaximal but identical workloads. Authors had 18 trained runners (male/female: N = 9/9, age: mean ± SD = 23 ± 3 years) complete randomized maximal oxygen consumption tests on all three modalities. Submaximal tests of 3 min were performed at 60%, 70%, and 80% of peak workload individually established for each modality. Breath-by-breath oxygen consumption, heart rate, fuel utilization, and energy expenditure were determined. The value of maximal oxygen consumption was not different between treadmill, elliptical, and stepper (49.3 ± 5.3, 48.0 ± 6.6, and 46.7 ± 6.2 ml·min−1·kg−1, respectively). Both physiological measures (oxygen consumption and heart rate) as well as carbohydrate and fat oxidation differed significantly between the different exercise intensities (60%, 70%, and 80%) but did not differ between the treadmill, elliptical trainer, and stepper. Therefore, the elliptical trainer and stepper are suitable substitutes for running during periods when a reduced running load is required, such as during rehabilitation from running-induced injury.


2022 ◽  
Vol 58 (1) ◽  
pp. 196-198
Author(s):  
S. P. Tripathi ◽  
G. S. Chundawat ◽  
Shashi Gour ◽  
S. P. S. Somvanshi ◽  
Kinjulck C. Singh

The study was undertaken to assess ergonomically efficiency of hanging type wheat graincleaner, carried out in adopted villages under On Farm Testing (OFT) and Front LineDemonstration (FLD) program conducted by KVK, Mandsaur (M.P.). Total Fifteen farmwomen were selected to assess the physiological workload to compare the impact ofimproved technology over conventional practice for hanging type grain cleaner. Physiologicalparameters i.e. HR, energy expenditure, cardiac cost reduction and physiological costreduction etc., were measured during operations. The results revealed that hanging typegrain cleaner has proved proficient on time and output parameters. The average cardiaccost of work was decreased by 82.29 per cent while using hanging type grain cleaner forwheat. Drudgery reduction was found 83.96 per cent and it saved time by 89.10 per centwhen compared to traditional practice. The physiological cost of work and energyexpenditure in terms of heart rate were observed to be lower while performing activitieswith hanging type grain cleaner as compared to the traditional practice.


2012 ◽  
Vol 8 (1) ◽  
pp. 41-46 ◽  
Author(s):  
H.C. Manso Filho ◽  
H.E.C.C.C. Manso ◽  
K.H. McKeever ◽  
S.R.R. Duarte ◽  
J.M.G. Abreu

In order to understand how gaited horses use their energy during exercise, a standardised field gaited test (SFGT) was developed to assess energy expenditure of four beat gaited horses independently of size, sex or breed. This work aimed at developing such an SFGT, using as main measurement parameter the heart rate (HR) of horses during the SFGT performance. Thirty-one four beat gaited horses were evaluated and divided into two groups: FIT (conditioned) and UNFIT (not conditioned). Horses were submitted to the SFGT and their heart rates were measured with a heart rate monitor as follows: right after being mounted, at the beginning of pre-test (HRSADDLE); at 5, 10, 15, 20, 25 and 30 minutes of four beat gait dislocation; and at 15 minutes after the recovery period (T+15). Maximum HR (HRMAX); HR percentage over 150 beats per minute (HR%≯150), HR percentage over 170 beats per minute (HR%≯170), and average HR during the four beat gait stage (HRM@M) of SFGT were calculated. Results were analysed by ANOVA for repeated measures. Where significant differences were observed, ‘T’ test was performed and significance was set at 5%. The FIT group presented HRMAX, HR+15, HRM@M, HR%≯150 and HR%≯170 rates lower (P<0.05) than the UNFIT group. It was noted that there was a negative correlation between fitness and HRMAX (R=−0.67; P<0.001) and a positive correlation between HRMAX and HR+15 (R=0.60; P<0.001) when comparing the FIT to the UNFIT horses. In conclusion, during the SFGT, the FIT group was more efficient in energy expenditure than the UNFIT group, based on the results observed for the significantly lower HRs during the SFGT. It is relevant to note that the SFGT developed and used in this research, which was easily reproduced and accurate, was able to detect and confirm important adaptations related to fitness in the athletic horse.


Sign in / Sign up

Export Citation Format

Share Document