scholarly journals Effect of layer thickness on flexural properties of PLA (PolyLactid Acid) by 3D printing

2018 ◽  
Vol 1130 ◽  
pp. 012017 ◽  
Author(s):  
A Nugroho ◽  
R Ardiansyah ◽  
L Rusita ◽  
I L Larasati
2021 ◽  
pp. 002199832110022
Author(s):  
Ahmed Alhelal ◽  
Zaheeruddin Mohammed ◽  
Shaik Jeelani ◽  
Vijaya K Rangari

Semi-crystalline carbon biochar is derived from spent coffee grounds (SCG) by a controlled pyrolysis process at high temperature/pressure conditions. Obtained biochar is characterized using XRD, SEM, and TEM techniques. Biochar particles are in the micrometer range with nanostructured morphologies. The SCG biochar thus produced is used as reinforcement in epoxy resin to 3 D print samples using the direct-write (DW) method with 1 and 3 wt. % loadings. Rheology results show that the addition of biochar makes resin viscous, enabling it to be stable soon after print; however, it could also lead to clogging of resin in printer head. The printed samples are characterized for chemical, thermal and mechanical properties using FTIR, TGA, DMA and flexure tests. Storage modulus improved with 1 wt. % biochar addition up to 27.5% and flexural modulus and strength increased up to 55.55% and 43.30% respectively. However, with higher loading of 3 wt. % both viscoelastic and flexural properties of 3D printed samples drastically reduced thus undermining the feasibility of 3D printing biochar reinforced epoxies at higher loadings.


2021 ◽  
Vol 0 (9) ◽  
pp. 17-21
Author(s):  
O. A. Dvoryankin ◽  
◽  
N. I. Baurova ◽  

Analysis of 3D-printing methods used in the molding production to manufacture master-models has been carried out. The technology was selected, which allowed one to make high-precision parts, combining the molding and the 3D-printing. Factors effecting on the quality of 3D-models printed by this technology were analyzed. Experimental studied for determination of the printing parameter influence (layer thickness, filling percentage, printing velocity) on ultimate strength of specimens made of ABS-plastic were carried out.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 774 ◽  
Author(s):  
Damir Godec ◽  
Santiago Cano ◽  
Clemens Holzer ◽  
Joamin Gonzalez-Gutierrez

Fused filament fabrication (FFF) combined with debinding and sintering could be an economical process for three-dimensional (3D) printing of metal parts. In this paper, compounding, filament making, and FFF processing of feedstock material with 55% vol. of 17-4PH stainless steel powder in a multicomponent binder system are presented. The experimental part of the paper encompasses central composite design for optimization of the most significant 3D printing parameters (extrusion temperature, flow rate multiplier, and layer thickness) to obtain maximum tensile strength of the 3D-printed specimens. Here, only green specimens were examined in order to be able to determine the optimal parameters for 3D printing. The results show that the factor with the biggest influence on the tensile properties was flow rate multiplier, followed by the layer thickness and finally the extrusion temperature. Maximizing all three parameters led to the highest tensile properties of the green parts.


2020 ◽  
Vol 26 (10) ◽  
pp. 1687-1700
Author(s):  
Mozhgan Sayanjali ◽  
Amir Masood Rezadoust ◽  
Foroud Abbassi Sourki

Purpose This paper aims to focus on the development of the three-dimensional (3D) printing filaments based on acrylonitrile butadiene styrene (ABS) copolymer and styrene-ethylene/butylene-styrene (SEBS) block copolymer, with tailored viscoelastic properties and controlled flow during the 3D printing process. Design/methodology/approach In this investigation, ABS was blended with various amounts of SEBS via a melt mixing process. Then the ABS/SEBS filaments were prepared by a single-screw extruder and printed by the FDM method. The rheological properties were determined using an MCR 501 from Anton-Paar. The melt flow behavior of ABS/SEBS filaments was determined. The morphology of the filaments was studied by scanning electron microscope and the mechanical (tensile and impact) properties, surface roughness and void content of printed samples were investigated. Findings The rheological results can accurately interpret what drives the morphology and mechanical properties’ changes in the blends. The impact strength, toughness, elongation-at-break and anisotropy in mechanical properties of ABS samples were improved concurrently by adding 40 Wt.% of SEBS. The optimal tensile properties of blend containing 40 Wt.% SEBS samples were obtained at −45°/+45° raster angle, 0.05 mm layer thickness and XYZ build orientation. Optimized samples showed an 890% increase in elongation compared to neat ABS. Also, the impact strength of ABS samples showed a 60% improvement by adding 40 Wt.% SEBS. Originality/value The paper simultaneously evaluates the effects of material composition and 3D printing parameters (layer thickness, raster angle and build orientation) on the rheology, morphology, mechanical properties and surface roughness. Also, a mechanical properties comparison between printed samples and their compression-molded counterpart was conducted.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 925
Author(s):  
Daniel-Constantin Anghel ◽  
Daniela Monica Iordache ◽  
Alin Daniel Rizea ◽  
Nicolae-Doru Stanescu

Nowadays, FDM technology permits obtaining functional prototypes or even end parts. The process parameters, such as layer thickness, building orientation, fill density, type of support, etc., have great influence on the quality, functionality and behavior of the obtained parts during their lifetime. In this paper, we present a study concerning the possibilities of obtaining certain values for clearance in revolute joints of non-assembly mechanisms manufactured by FDM 3D Printing. To ensure the functioning of the assembly, one must know the relationship between the imposed and measured clearances by taking into account the significant input data. One way is to use the automat learning method with an artificial neuronal network (ANN). The data necessary for the training, testing, and validation of ANN were experimentally obtained, using a complete L 27 Taguchi experimental plan. A total of 27 samples were printed with different values of the following parameters: the infill density, the imposed clearance between the shaft and the hole, and the layer thickness. ANN architecture corresponds to the Hecht–Kolmogorov theorem. Genetic algorithms (GA) were used for the optimization of the output. The Neural Network Toolbox from MATLAB was used for training the network and a hybrid tool genetic algorithm artificial neural network (GA-ANN) was used to minimize the value of the absolute relative clearance (arc). The minimum value of the absolute relative clearance established by GA-ANN was 0.0385788. This value was validated experimentally, with a relative difference of 4%. We also introduced a rational function to approximate the correlation between the input and output parameters. This function fulfills some frontier conditions resulted from practice. In addition, the function may be used to establish the designed clearance in order to obtain an imposed one.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2774-2788
Author(s):  
Zhaozhe Yang ◽  
Xinhao Feng ◽  
Min Xu ◽  
Denis Rodrigue

To efficiently and economically utilize a wood-plastic biocomposite, an eco-friendly biocomposite was prepared using modified poplar fiber and polylactic acid (PLA) via 3D printing technology for the first time. First, the effects of poplar fiber (0, 1, 3, 5, 7, and 9%) on the mechanical and rheological properties of the printed biocomposites were investigated. Subsequently, the printing parameters, including printing temperature, speed, and layer thickness, were optimized to obtain the biocomposite with superior properties. Finally, four printing orientations were applied to the biocomposite based on the optimized printing parameters to study the effect of filament orientation on the properties of the biocomposite. Favorable printability and mechanical properties of the biocomposite were obtained at 5% poplar fiber. The optimal printing temperature of 220 °C, speed of 40 mm/s, and layer thickness of 0.2 mm were obtained to produce the desired mechanical properties of the biocomposite with the printing orientation in a longitudinal stripe. However, the printing parameters should be chosen according to the applications, where different physical and mechanical properties are needed to achieve efficient and economical utilization of the biocomposites.


Author(s):  
Vladimir E. Kuznetsov ◽  
Azamat G. Tavitov ◽  
Oleg D. Urzhumtcev

Current paper investigates the influence of hardware setup and parameters of a 3D printing process based on fused filament fabrication (FFF) technology on resulting sample strength. Three-point bending of samples printed with long side oriented along Z axis was used as a measure of the interlayer bonding strength. The same CAD model was converted into NC-programs through same slicing software to be run on four different desktop FFF 3D printers, out of filament of same brand and color. Within all the printers same ranges of layer thickness values from 0.1 to 0.3 mm and feed rates from 25 to 75 mm/s were planned to be varied. All the machines demonstrated statistically almost identical values of maximum flexural strength, however the different machines exhibited maximum sample strength with different combinations of varied parameters. Among all the hardware factors observed, the most important was proved to be extruder type, direct or Bowden. This feature fundamentally changes the nature of studied parameters influence onto the resulting strength of the FFF process. For the extruders of Bowden type the length of flexible guiding tube is of great importance.All the machines demonstrated statistically almost identical values of maximum flexural strength, however the different machines exhibited maximum sample strength with different combinations of varied parameters. Among all the hardware factors observed, the most important was proved to be extruder type, direct or Bowden. This feature fundamentally changes the nature of studied parameters influence onto the resulting strength of the FFF process. For the extruders of Bowden type the length of flexible guiding tube is of great importance.


2021 ◽  
Vol 3 (1) ◽  
pp. 7-14
Author(s):  
Yulian Subakti ◽  
Hasdiansah - ◽  
Zaldy Kurniawan

Fused Deposition Modeling (FDM) is a technique of 3D Printing machines that is popularly used to print products. The printed product certainly has the ideal tensile strength characteristics if it has a precise size and good shape according to the standard. One of the materials that can be processed in a 3D printing machine is ST PLA. Research in terms of tensile testing has been carried out on PLA/ABS materials. However, tensile testing with annealing process using ST PLA filament is still very rarely done. From these problems, it is necessary to research to obtain optimal process parameters on 3D printing machines, to obtain the highest tensile strength from the annealing process using ST PLA material. This research was conducted using a 3D printer DIY Prusa model with a printing area of ​​XYZ, 300 mm x 300 mm x 350 mm. The material used is ST PLA filament with a diameter of 1.75 mm in green. The process parameters in this research are layer thickness, nozzle temperature and flow rate. For annealing media use beach sand, coffee and wheat. The shape of the test specimen follows the ASTM D638 type IV standard. As for the design of the process parameters using the Taguchi L9 method (33). The process parameter values ​​that produce the highest tensile strength without annealing are layer thickness 0.3 mm, nozzle temperature 205oC, and flow rate 100%. The annealing process parameters that produce the highest tensile strength are annealing time of 15 minutes, oven temperature of 110oC, for annealing media using coffee.


Sign in / Sign up

Export Citation Format

Share Document