scholarly journals Machine Learning Medical Resource Allocation

2021 ◽  
Vol 2089 (1) ◽  
pp. 012082
Author(s):  
M. Sailaja ◽  
Abdul Ahad ◽  
K Sivaramakrishna ◽  
Ali Hussain

Abstract In the last decade, machine learning has become very interesting, driven by cheaper computing power and costly storage—so that growing numbers of data can be saved, processed and analysed effectively. Enhanced algorithms are designed and used to identify hidden insights and correlations between non-human data elements in broad datasets. These insights help companies to better decide and optimize key indicators of interest. Machine learning is becoming more common because of the agnostic use of learning algorithms. The paper presents a number of machinery and auxiliary tumour processes to assign health resources, and proposes a number of new ways to use these resources at the time of artificial intelligence in order to make human life part of this process and explore the good conditions which are shared by both the medical and computer industries.

2020 ◽  
Vol 2 ◽  
pp. 58-61 ◽  
Author(s):  
Syed Junaid ◽  
Asad Saeed ◽  
Zeili Yang ◽  
Thomas Micic ◽  
Rajesh Botchu

The advances in deep learning algorithms, exponential computing power, and availability of digital patient data like never before have led to the wave of interest and investment in artificial intelligence in health care. No radiology conference is complete without a substantial dedication to AI. Many radiology departments are keen to get involved but are unsure of where and how to begin. This short article provides a simple road map to aid departments to get involved with the technology, demystify key concepts, and pique an interest in the field. We have broken down the journey into seven steps; problem, team, data, kit, neural network, validation, and governance.


Author(s):  
M. A. Fesenko ◽  
G. V. Golovaneva ◽  
A. V. Miskevich

The new model «Prognosis of men’ reproductive function disorders» was developed. The machine learning algorithms (artificial intelligence) was used for this purpose, the model has high prognosis accuracy. The aim of the model applying is prioritize diagnostic and preventive measures to minimize reproductive system diseases complications and preserve workers’ health and efficiency.


2020 ◽  
Vol 237 (12) ◽  
pp. 1430-1437
Author(s):  
Achim Langenbucher ◽  
Nóra Szentmáry ◽  
Jascha Wendelstein ◽  
Peter Hoffmann

Abstract Background and Purpose In the last decade, artificial intelligence and machine learning algorithms have been more and more established for the screening and detection of diseases and pathologies, as well as for describing interactions between measures where classical methods are too complex or fail. The purpose of this paper is to model the measured postoperative position of an intraocular lens implant after cataract surgery, based on preoperatively assessed biometric effect sizes using techniques of machine learning. Patients and Methods In this study, we enrolled 249 eyes of patients who underwent elective cataract surgery at Augenklinik Castrop-Rauxel. Eyes were measured preoperatively with the IOLMaster 700 (Carl Zeiss Meditec), as well as preoperatively and postoperatively with the Casia 2 OCT (Tomey). Based on preoperative effect sizes axial length, corneal thickness, internal anterior chamber depth, thickness of the crystalline lens, mean corneal radius and corneal diameter a selection of 17 machine learning algorithms were tested for prediction performance for calculation of internal anterior chamber depth (AQD_post) and axial position of equatorial plane of the lens in the pseudophakic eye (LEQ_post). Results The 17 machine learning algorithms (out of 4 families) varied in root mean squared/mean absolute prediction error between 0.187/0.139 mm and 0.255/0.204 mm (AQD_post) and 0.183/0.135 mm and 0.253/0.206 mm (LEQ_post), using 5-fold cross validation techniques. The Gaussian Process Regression Model using an exponential kernel showed the best performance in terms of root mean squared error for prediction of AQDpost and LEQpost. If the entire dataset is used (without splitting for training and validation data), comparison of a simple multivariate linear regression model vs. the algorithm with the best performance showed a root mean squared prediction error for AQD_post/LEQ_post with 0.188/0.187 mm vs. the best performance Gaussian Process Regression Model with 0.166/0.159 mm. Conclusion In this paper we wanted to show the principles of supervised machine learning applied to prediction of the measured physical postoperative axial position of the intraocular lenses. Based on our limited data pool and the algorithms used in our setting, the benefit of machine learning algorithms seems to be limited compared to a standard multivariate regression model.


2021 ◽  
Vol 10 (2) ◽  
pp. 205846012199029
Author(s):  
Rani Ahmad

Background The scope and productivity of artificial intelligence applications in health science and medicine, particularly in medical imaging, are rapidly progressing, with relatively recent developments in big data and deep learning and increasingly powerful computer algorithms. Accordingly, there are a number of opportunities and challenges for the radiological community. Purpose To provide review on the challenges and barriers experienced in diagnostic radiology on the basis of the key clinical applications of machine learning techniques. Material and Methods Studies published in 2010–2019 were selected that report on the efficacy of machine learning models. A single contingency table was selected for each study to report the highest accuracy of radiology professionals and machine learning algorithms, and a meta-analysis of studies was conducted based on contingency tables. Results The specificity for all the deep learning models ranged from 39% to 100%, whereas sensitivity ranged from 85% to 100%. The pooled sensitivity and specificity were 89% and 85% for the deep learning algorithms for detecting abnormalities compared to 75% and 91% for radiology experts, respectively. The pooled specificity and sensitivity for comparison between radiology professionals and deep learning algorithms were 91% and 81% for deep learning models and 85% and 73% for radiology professionals (p < 0.000), respectively. The pooled sensitivity detection was 82% for health-care professionals and 83% for deep learning algorithms (p < 0.005). Conclusion Radiomic information extracted through machine learning programs form images that may not be discernible through visual examination, thus may improve the prognostic and diagnostic value of data sets.


Author(s):  
Joel Weijia Lai ◽  
Candice Ke En Ang ◽  
U. Rajendra Acharya ◽  
Kang Hao Cheong

Artificial Intelligence in healthcare employs machine learning algorithms to emulate human cognition in the analysis of complicated or large sets of data. Specifically, artificial intelligence taps on the ability of computer algorithms and software with allowable thresholds to make deterministic approximate conclusions. In comparison to traditional technologies in healthcare, artificial intelligence enhances the process of data analysis without the need for human input, producing nearly equally reliable, well defined output. Schizophrenia is a chronic mental health condition that affects millions worldwide, with impairment in thinking and behaviour that may be significantly disabling to daily living. Multiple artificial intelligence and machine learning algorithms have been utilized to analyze the different components of schizophrenia, such as in prediction of disease, and assessment of current prevention methods. These are carried out in hope of assisting with diagnosis and provision of viable options for individuals affected. In this paper, we review the progress of the use of artificial intelligence in schizophrenia.


2020 ◽  
Vol 5 (19) ◽  
pp. 32-35
Author(s):  
Anand Vijay ◽  
Kailash Patidar ◽  
Manoj Yadav ◽  
Rishi Kushwah

In this paper an analytical survey on the role of machine learning algorithms in case of intrusion detection has been presented and discussed. This paper shows the analytical aspects in the development of efficient intrusion detection system (IDS). The related study for the development of this system has been presented in terms of computational methods. The discussed methods are data mining, artificial intelligence and machine learning. It has been discussed along with the attack parameters and attack types. This paper also elaborates the impact of different attack and handling mechanism based on the previous papers.


2021 ◽  
Author(s):  
Yew Kee Wong

Deep learning is a type of machine learning that trains a computer to perform human-like tasks, such as recognizing speech, identifying images or making predictions. Instead of organizing data to run through predefined equations, deep learning sets up basic parameters about the data and trains the computer to learn on its own by recognizing patterns using many layers of processing. This paper aims to illustrate some of the different deep learning algorithms and methods which can be applied to artificial intelligence analysis, as well as the opportunities provided by the application in various decision making domains.


2021 ◽  
Vol 1 (1) ◽  
pp. 76-87
Author(s):  
Alexander Buhmann ◽  
Christian Fieseler

Organizations increasingly delegate agency to artificial intelligence. However, such systems can yield unintended negative effects as they may produce biases against users or reinforce social injustices. What pronounces them as a unique grand challenge, however, are not their potentially problematic outcomes but their fluid design. Machine learning algorithms are continuously evolving; as a result, their functioning frequently remains opaque to humans. In this article, we apply recent work on tackling grand challenges though robust action to assess the potential and obstacles of managing the challenge of algorithmic opacity. We stress that although this approach is fruitful, it can be gainfully complemented by a discussion regarding the accountability and legitimacy of solutions. In our discussion, we extend the robust action approach by linking it to a set of principles that can serve to evaluate organisational approaches of tackling grand challenges with respect to their ability to foster accountable outcomes under the intricate conditions of algorithmic opacity.


Author(s):  
Peter R Slowinski

The core of artificial intelligence (AI) applications is software of one sort or another. But while available data and computing power are important for the recent quantum leap in AI, there would not be any AI without computer programs or software. Therefore, the rise in importance of AI forces us to take—once again—a closer look at software protection through intellectual property (IP) rights, but it also offers us a chance to rethink this protection, and while perhaps not undoing the mistakes of the past, at least to adapt the protection so as not to increase the dysfunctionality that we have come to see in this area of law in recent decades. To be able to establish the best possible way to protect—or not to protect—the software in AI applications, this chapter starts with a short technical description of what AI is, with readers referred to other chapters in this book for a deeper analysis. It continues by identifying those parts of AI applications that constitute software to which legal software protection regimes may be applicable, before outlining those protection regimes, namely copyright and patents. The core part of the chapter analyses potential issues regarding software protection with respect to AI using specific examples from the fields of evolutionary algorithms and of machine learning. Finally, the chapter draws some conclusions regarding the future development of IP regimes with respect to AI.


Sign in / Sign up

Export Citation Format

Share Document