scholarly journals Study of the Possibility of Creating Autonomous Low-Power Thermal Power Plants Using Alternative Energy Sources

2021 ◽  
Vol 2096 (1) ◽  
pp. 012077
Author(s):  
A S Shubina ◽  
G E Marin ◽  
A R Akhmetshin

Abstract The areas of use of low - capacity power plants are very wide: industrial enterprises, medical institutions, residential cottages, business centers and other objects of large cities; main gas pipelines, gas distribution stations, oil pipelines that need energy supply for normal operation; enterprises for processing household waste; developing areas of the country where there are currently no energy sources and power lines; energy-deficient areas of the Far North, Far East, and some Non-Chernozem regions; small towns, cottage settlements and villages, in many of them the issue of centralized heat supply; large livestock farms, enterprises for processing agricultural products, enterprises of the logging industry, etc. In this study, an important problem for oil fields is considered - utilization of associated petroleum gas. Low-power power plants are considered as a combustion engine. It is important to note that high-quality fuel treatment is required for internal combustion engines or gas turbines. The proposed scheme of associated gas utilization based on a small power plant is not fuel-intensive. Studies of compressor and turbine matching are presented, resulting in an optimal range of operating areas. These results allow us to determine the limitations for the operation of the power plant.

Author(s):  
V. A. Khrustalev ◽  
M. V. Garievskii

The article presents the technique of an estimation of efficiency of use of potential heat output of an auxiliary boiler (AB) to improve electric capacity and manoeuvrability of a steam turbine unit of a power unit of a nuclear power plant (NPP) equipped with a water-cooled water-moderated power reactor (WWER). An analysis of the technical characteristics of the AB of Balakovo NPP (of Saratov oblast) was carried out and hydrocarbon deposits near the NPP were determined. It is shown that in WWER nuclear power plants in Russia, auxiliary boilers are mainly used only until the normal operation after start-up whereas auxiliary boiler equipment is maintained in cold standby mode and does not participate in the generation process at power plants. The results of research aimed to improve the systems of regulation and power management of power units; general principles of increasing the efficiency of production, transmission and distribution of electric energy, as well as the issues of attracting the potential of energy technology sources of industrial enterprises to provide load schedules have been analyzed. The possibility of using the power complex NPP and the AB as a single object of regulation is substantiated. The authors’ priority scheme-parametric developments on the possibility of using the thermal power of the auxiliary boilers to increase the power of the steam turbine of a nuclear power plant unit equipped with WWER reactors unit during peak periods, as well as the enthalpy balance method for calculating heat flows, were applied. The surface area of the additional heater of the regeneration “deaerator – high pressure heaters” system and its cost were calculated. On the basis of calculations, it was shown that the additional power that can be obtained in the steam turbine of the NPP with a capacity of 1200 MW due to the use of heat of the modernized auxiliary boiler in the additional heat exchanger is 40.5 MW. The additional costs for the implementation of the heat recovery scheme of the auxiliary boiler at different prices for gas fuel and the resulting system effect were estimated in an enlarged way. Calculations have shown the acceptability of the payback period of the proposed modernization.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Talat Ozden

AbstractThe world is still heavily using nonconventional energy sources, which are worryingly based on carbon. The step is now alternative energy sources hoping that they will be more environmentally friendly. One of the important energy conversion forms by using these sources is photovoltaic solar systems. These type of power plants is on the increase in everyday on the world. Before investment a solar power plant in a specified region, a techno-economic analyse is performed for that power plant by using several meteorological data like solar irradiance and ambient temperature. However, this analyses generally lacks evaluation on effects of climatic and geographical conditions. In this work, 5 years of data of 27 grid-connected photovoltaic power plants are investigated, which are installed on seven different climate types in Turkey. Firstly, the power plants are categorized considering the tilt angles and Köppen–Gieger climate classification. The performance evaluations of the plants are mainly conducted using monthly average efficiencies and specific yields. The monthly average efficiencies, which were classified using the tilts and climate types were from 12 to 17%, from 12 to 16% and from 13 to 15% for tilts 30°/10°, 25° and 20°, respectively. The variation in the specific yields decrease with elevation as y(x) =  − 0.068x + 1707.29 (kWh/kWp). As the performances of photovoltaic systems for some locations within the Csb climatic regions may relatively lower than some other regions with same climate type. Thus, techno-economic performance for PVPP located in this climate classification should be carefully treated.


Author(s):  
Andrei Khitrov ◽  
Alexander Khitrov ◽  
Evgeny Veselkov ◽  
Vyacheslav Tikhonov

Autonomous low power electric power plants working with variable speed energy sources or electric subsystems of cogeneration plants of some type need to increase the low speed or the low voltage of the system. In this paper the investigations and the results of the experiments conducted using different structures are given.


2020 ◽  
Vol 10 (4) ◽  
pp. 174-191
Author(s):  
Iryna Perevozova ◽  
Tetiana Maksimenko ◽  
Svіtlana Bondarenko

The aim of the article is to study the main approaches and develop a methodology for assessing the efficiency of enterprises in the transition to alternative (helio) energy sources. The concepts of the ʻenergy efficiencyʼ and the ʻenergy savingʼ are the main characteristics of efficient use of energy resources. The term "energy efficiency" is a resultant indicator that captures the achieved level of efficiency of consumption and use of fuel and energy resources in the process of enterprise activity. The concept of ʻenergy savingʼ is a process indicator that indicates the way to achieve energy efficiency (implementation of a set of measures) of resource conservation in the enterprise. It is established that the key indicator for assessing the efficiency of the energy consumption system is the energy intensity indicator, the reduction of which should be considered as one of the main tasks in order to increase the efficiency of the enterprise. It is proved that the transition of an industrial enterprise to alternative (helio) energy sources is a guarantee of reducing its energy intensity. Therefore, the issues of implementation of energy saving programs are relevant for industrial enterprises. Energy saving measures will help reduce costs at the enterprise, conserve natural resources. The study found that solar energy in Ukraine in 2019 shows a bright positive trend. The ʻgreen tariffʼ was officially received by stations with a total capacity of 3537.382 MW, which is 5.48 times higher than in 2018. In 2019, the capacity of industrial solar power plants was put into operation 3.5 times more than in all previous years. The amount of electricity produced by industrial plants, in 2019, is 2.66 times higher than in 2018. The transition to alternative energy sources for industrial enterprises is a rather complex technological task, which requires methodological developments for the optimization of energy resources to maximize the efficiency of enterprises. A method for assessing the efficiency of the enterprise in its transition to alternative (helio) energy sources based on the use of production functions and factor models, which include the entire evaluation apparatus and a set of indicators of efficiency (appropriateness) of resource use, i.e. resource conservation. This method of assessing the performance of the enterprise is based on the use of the Cobb-Douglas production function, which allows to justify the decision on the feasibility of the use of production resources and to adjust the deviations of the spent resources from the normative values.


Author(s):  
Yuliya S. Borisova ◽  
Nataliya S. Samarskaya

Introduction. Active withdrawal of energy raw materials from the subsoil, as well as technogenic impact from energy sources based on traditional fuel, lead to irreversible environmental consequences. To minimize this impact, it is necessary to start from two main conditions: the search for alternative energy sources and the improvement of the existing ones. Problem Statement. The objective of this study is a comparative analysis of energy facilities in order to identify the plant that has the greatest negative impact on the environment. Theoretical part. The comparative analysis of various energy production systems reflects the ecological and economic components of each. For example, a thermal power plant (TPP), a nuclear power plant (NPP) and a wind power plant (WPP) are considered. The negative impact on the environment is mainly exerted on the atmospheric air, in connection with which the data on the amount of pollutants are considered. Also, a modified Leopold matrix was constructed for an expert assessment of the mentioned stations. Conclusions. The results of the analysis show that among the considered power plants, the wind power plant is the most environmentally friendly and favorable for the health of the population.


Author(s):  
Александр Григорьевич Комков ◽  
Александр Константинович Сокольский

В статье рассмотрено современное состояние энергоснабжения и перспективы развития альтернативных источников энергии на территории Крайнего Севера. Отмечено, что несмотря на острую потребность во внедрении возобновляемых источников энергии, установленные мощности всех ветряных и солнечных электростанций в регионе не превышают 7-8 МВт. Также в работе рассчитаны технический и экономический потенциал ветровой энергии региона, на основании которых подобрана наиболее эффективная установка. The article discusses the current state of energy supply and the prospects for the development of alternative energy sources in the Far North. It is noted that despite the urgent need for the introduction of renewable energy sources, the installed capacities of all wind and solar power plants in the region do not exceed 7-8 MW. Also, the technical and economic potential of the region’s wind energy was calculated based on which the most efficient installation was selected.


Author(s):  
W. J. Thayer ◽  
R. T. Taussig

Applications of energy exchangers, a type of gasdynamic wave machine, were evaluated in power plants fired by pressurized, fluidized bed combustors (PFBCs). Comparative analyses of overall power plant efficiency indicate that the use of energy exchangers as hot gas expanders may provide a 0.5 to 1.5 efficiency point increase relative to gas turbines. In addition, the unique operating characteristics of these machines are expected to reduce rotating component wear by a factor of 50 to 300 relative to conventional gas turbines operating in the particulate laden PFBC effluent stream.


2021 ◽  
Vol 286 ◽  
pp. 04013
Author(s):  
George Iulian Balan ◽  
Octavian Narcis Volintiru ◽  
Ionut Cristian Scurtu ◽  
Florin Ioniță ◽  
Mirela Letitia Vasile ◽  
...  

Vessels that have navigation routes in areas with ambient temperatures that can drop below + 5 [°C], with a relative humidity of over 65%, will have implemented technical solutions for monitoring and combating ice accumulations in the intake routes of gas turbine power plants. Because gas turbines are not designed and built to allow the admission of foreign objects (in this case - ice), it is necessary to avoid the accumulation of ice through anti-icing systems and not to melt ice through defrost systems. Naval anti-icing systems may have as a source of energy flow compressed air, supersaturated steam, exhaust gases, electricity or a combination of those listed. The monitoring and optimization of the operation of the anti-icing system gives the gas turbine power plant an operation as close as possible to the normal regimes stipulated in the ship's construction or retrofit specification.


2020 ◽  
pp. 117-133
Author(s):  
L.Hr. Melnyk ◽  
O.N. Derykolenko ◽  
Yu.O. Mazin ◽  
O.I. Matsenko ◽  
V.S. Piven

Energy security and independence is one of the key points in sustainable development. In modern conditions of rapid growth and development of technologies, more and more attention is paid to finding practical solutions for environmentally friendly and inexpensive energy production. For a long time, scientists from various fields of scientific activity around the world have been engaged in the development and use of alternative energy sources. The share of renewable energy sources in the generation of electricity around the world is growing steadily, which indicates an increase in the use of energy obtained from alternative sources, such as, for example, wind and sun. These trends testify to the desire of consumers to abandon the use of fossil energy sources and nuclear power plants as much as possible in order to ensure further sister development. Under the current conditions of the COVID-19 pandemic, the demand for electricity worldwide has decreased, however, as the study shows, this pandemic has not affected the development of renewable energy. The article analyzes modern trends in the development of renewable energy, taking into account the experience of the EU countries and leading countries of the world in this area. As a result, it was concluded that in modern conditions, to achieve sustainable development, transformation processes are needed in such an important area as energy. Various processes in the global economy, which contributed to the intensive development of alternative energy sources, served as a powerful impetus for such changes. Many countries have made significant progress in the development of renewable energy.


Kilat ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261-271
Author(s):  
Sugeng Purwanto

ABSTRACT Renewable energy is potential alternative energy to replace the central role of fossil energy which has been going on since the early 20th century. The solar power plant is alternative energy, especially for households and industry, and can be designed as a hybrid power plant consisting of solar panels, batteries, an automatic transfer switch (ATS), and a grid. This research will focus on developing ATS based on a microcontroller. It functions to regulate the load supply automatically from the three sources of electrical energy, like solar panels, batteries, and grid while the microcontroller functions to monitor the transfer of power from the solar power plant to grid and voltage movements in the system so that current and voltage data can be recorded from time to time to improve system reliability, effectiveness, and efficiency of the tool. ATS components consist of MCB, magnetic contactor, timer H3CR, relay, 2000VA inverter, solar charge controller 100A, NodeMCU ESP8266 IoT, and battery 12V 100AH. This research is conducted in one year to produce ATS based on a microcontroller that can automatically regulate the supply of loads from the three sources of electrical energy with a good level of efficiency and stability.  Keywords: solar power plants, hybrid power plants, an automatic transfer switch.  ABSTRAK Energi baru terbarukan merupakan energi alternatif yang potensial untuk menggantikan peran sentral dari energi fosil yang telah berlangsung sejak awal abad ke 20. PLTS merupakan salah satu energi alternatif penyedia energi listrik untuk rumah tangga dan industri serta dapat dirancang sebagai sistem pembangkit listrik tenaga hibrid (PLTH) yang terdiri dari panel surya, baterai, sistem pengaturan beban atau ATS (automatic transfer switch) dan jaringan PLN. Peneltian difokuskan pada pengembangan sistem ATS berbasiskan mikrokontroler. ATS berfungsi untuk mengatur suplai beban secara otomatis dari ketiga sumber energi listrik yaitu panel surya, baterai dan PLN sedangkan mikrokontroler berfungsi memonitor perpindahan daya dari PLTS ke sumber PLN dan pergerakan tegangan pada sistem sehingga dapat dilakukan pencatatan data arus dan tegangan dari waktu ke waktu sehingga dapat meningkatkan keandalan sistem, efektifitas dan efisiensi alat. Komponen ATS terdiri dari MCB, magnetic contactor, timer H3CR, relay, inverter 2000VA, solar charge controller 100A, NodeMCU ESP8266 IoT, dan baterai 12V 100Ah. Penelitian ini akan dilakukan dalam periode satu tahun menghasilkan ATS berbasiskan mikrokontroler yang dapat mengatur suplai beban secara otomatis dari ketiga sumber energi listrik dengan tingkat efisiensi dan kestabilan yang baik. Tim penelitian ini tediri dari 3 orang dan berasal dari program studi teknik elektro, IT PLN.  Kata kunci: pembangkit listrik tenaga surya, pembangkit listrik tenaga hibrid, pengaturan suplai beban.


Sign in / Sign up

Export Citation Format

Share Document