scholarly journals Effect of Adding Nanoparticles Ag2O on Mechanical Properties and Thermal Conductivity of PMMA/ Polypropylene Fiber Composites

2021 ◽  
Vol 2114 (1) ◽  
pp. 012071
Author(s):  
Hussien. A. Yassien ◽  
Najwa J. Jubier

Abstract In this research, mechanical properties (hardness, impact strength, comparison strength) and thermal conductivity are examined for PMMA/polypropylene fiber composites reinforced with a different weight fraction of Ag2O nanoparticles (0%,0.05%,0.1%,0.15%,0.2%,0.25 and 0.3%). Samples prepared by Hand Lay-Up Moulding method at room temperature according to the international standard dimensions for each test, results showed a noticeable improvement in the values of mechanical properties and thermal conductivity with increasing the weight fraction of the silver oxide nanoparticles.

2010 ◽  
Vol 168-170 ◽  
pp. 1325-1329
Author(s):  
Ye Ran Zhu ◽  
Jun Cai ◽  
Dong Wang ◽  
Guo Hong Huang

This paper investigates the mechanical properties (compressive strength, splitting tensile strength and flexural toughness) of polypropylene fiber reinforced self-compacting concrete (PFRSCC). The effect of the incorporation of polypropylene fiber on the mechanical properties of PFRSCC is determined. Four point bending tests on beam specimens were performed to evaluate the flexural properties of PFRSCC. Test results indicate that flexural toughness and ductility are remarkably improved by the addition of polypropylene fiber.


2009 ◽  
Vol 79-82 ◽  
pp. 377-380
Author(s):  
Hong Yun Zhao ◽  
Guo Dong Wang ◽  
Chun Hua Xu ◽  
Feng Yuan Shu

After reheated at different temperatures for 5 minutes, the 400MPa Ultrafine Grained Steel specimens were air-cooled to room temperature, and then carried out the mechanical nanocrystallization surface treatment and structure performance testing. On the basis of comparing the test results on the specimens before and after the mechanical nanocrystallization surface treatment, the process of mechanical nanocrystallization was analyzed briefly. The results show that: as the reheating temperature rising, the trend of grain size growing increases markedly, and the mechanical properties also drop down to different degrees; when the reheating temperature is around 800°C, because of the pearlite spheroidized significantly, its mechanical properties drop the most seriously; after the mechanical nanocrystallization surface treatment, not only its surface form a layer of fine nano-layer (about 100 nm) structure, but also its mechanical properties rise obviously, and the yield strength is over 450MPa.


2015 ◽  
Vol 816 ◽  
pp. 48-53
Author(s):  
Jing Zhang ◽  
Hua Shun Yu ◽  
Xin Ting Shuai ◽  
Hong Mei Chen ◽  
Guang Hui Min

Al2O3 particles reinforced ZL109 composites were prepared by in-situ reaction between Fe2O3+MnO2 and Al in this paper. The influence of ratio of Mn to Fe on the morphologies of Al-Si-Mn-Fe phase and mechanical properties of the composites was investigated. The microstructure was studied by electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM). The results show that the Al2O3 particles displaced by the Fe2O3+MnO2/Al system are in nanosize. The acicular Al-Si-Fe phases change from acicular to polygonal shape and become smaller with the increase manganese content. The hardness test results have no big difference on the composites. However, the ultimate tensile strength at room temperature and 350°C enhance evidently with the increasing of Mn/Fe.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1735
Author(s):  
Xuanliang Chen ◽  
Eva Anne Mørtsell ◽  
Jonas Kristoffer Sunde ◽  
Minho O ◽  
Calin Daniel Marioara ◽  
...  

Aging heat treatment is the most commonly used strengthening method for Al–Mg–Si alloys since high-density precipitates will be formed to hinder the movement of dislocations. In the current work, room temperature cyclic deformation was attempted to strengthen the alloy. We compared tensile test results of aged samples and cyclically deformed samples. It was found that cyclically deformed samples can achieve similar strength and approximately twice the uniform elongation as the peak aged samples. The high density of dislocations and nanoclusters observed in the cyclically deformed samples is thought to be the main reason for strengthening. Different cyclic deformation conditions have been tried and their effects were discussed.


2021 ◽  
pp. 2188-2196
Author(s):  
Tagreed M. Al-Saadi ◽  
Anaam W. Watan ◽  
Hanaa G. Attiya

This study was achieved to satisfy two goals, the first of which is to treat an environmental problem represented by the disposal of date seeds, and the second is the use of these wastes to improve some mechanical and thermal properties of poly methyl methacrylate PMMA through strengthening different proportions of the powder of date seeds. Particles of date seeds were used as a natural strengthening material for PMMA polymer, by mixing the matrix material (resin) with the hardener while still stirring continuously for a period of 10 min. After that, the samples of the reinforced material were prepared by adding the powder of date seeds, which is the reinforcing substance, with different percentages of weight fraction (0, 0.5, 1, 2, 3, 5 wt. %) and a grain size of <75 µm, while continuing to stir (10 min) for a second time. The composite samples were prepared by the Hand-Lay-up method and cut according to the standard ASTM. Thermal conductivity and some mechanical properties, such as impact strength, tensile strength, compressive strength, flexural strength, and hardness, were studied. An improvement was found in all properties at the reinforcement rate of 1-2 wt. %.


2009 ◽  
Vol 1215 ◽  
Author(s):  
Ken Kurosaki ◽  
Masato Ito ◽  
Yuki Kitano ◽  
Hiroaki Muta ◽  
Masayoshi Uno ◽  
...  

AbstractFine bulk samples of delta-phase Hf hydride with various hydrogen contents (CH) ranging from 1.62 to 1.72 in the atomic ratio (H/Hf) were prepared, and their thermal and mechanical properties were characterized. In the temperature range from room temperature to around 650 K, the heat capacity and thermal diffusivity of the samples were measured and the thermal conductivity was evacuated. The elastic modulus was calculated from the measured sound velocity. The Vickers hardness was measured at room temperature. Effects of CH and/or temperature on the properties of Hf hydrides were discussed. At room temperature, the thermal conductivity values of the Hf hydrides were 23 Wm−1K−1. The Young's and shear moduli and the Vickers hardness of Hf hydride decreased with increasing CH.


2013 ◽  
Vol 639-640 ◽  
pp. 354-358 ◽  
Author(s):  
Hui Li ◽  
Ying She Luo ◽  
Jian Jun Xie ◽  
Sheng Ming Chen

The rheological mechanical properties of two kinds of self-designed epoxy adhesive curing systems were studied in this paper through the dynamic and static thermodynamics instrument named EPLEXOR 500N made by GABO® company in Germany. Short-term creep tests were carried out under three different temperature conditions of 20°C, 30°C and 40°C and the rheological model is developed to describe the materials creep law. In addition, the test results from the two different epoxy adhesive are also compared and analyzed.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 339
Author(s):  
Gonglian Chen ◽  
Fenglan Li ◽  
Pengfei Jing ◽  
Jingya Geng ◽  
Zhengkai Si

With the premise of investigating mechanical properties, the thermal conductivity of autoclaved aerated concrete (AAC) is a key index of self-insulation block walls for building energy conservation. This study focused on the effect of pore structures on the mechanical performance and thermal conductivity of AAC with the comparison of AAC base materials. Different kinds of AAC and their base materials were prepared and experimentally investigated. While maintaining a consistent mix proportion of the AAC base material, the pore structure of AAC was changed by the dosage of aluminum power/paste, foam stabilizer, and varying the stirring time of aluminum paste. The steam curing systems of AAC and the base material were determined based on SEM (Scanning Electronic Microscopy) and XRD (X-Ray Diffraction) tests. With almost the same apparent density, the pore size decreased with the increasing content of foam stabilizer, and the mixing time of aluminum paste and foam stabilizer has a great influence on pore size. The thermal conductivity test and compressive test results indicated that that pore size had an effect on the thermal conductivity, but it had little effect on the compressive strength, and the thermal conductivity of sand aeration AAC was 8.3% higher than that of fly ash aeration AAC; the compressive strength was 10.4% higher, too. With almost the same apparent density, the regression mathematical model indicates that the thermal conductivity of AAC increased gradually with the increase of pore size, but it had little effect on the compressive strength. From the test results of basic mechanical properties, the mechanical model of cubic compressive strength, elastic modulus, axial compressive strength, and splitting tensile strength was obtained. The proposed stress–strain relationship model could well describe the relationship of AAC and the base material at the rising section of the curve.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Mohaiman J. Sharba ◽  
Z. Leman ◽  
M. T. H. Sultan ◽  
M. R. Ishak ◽  
M. A. Azmah Hanim

Monotonic (tensile and compression) properties of woven kenaf/glass reinforced unsaturated polyester sandwich hybrid composites have been experimentally investigated. Five types of composites laminates were fabricated using a combination of hand lay-up and cold press techniques, postcured for two hours at 80°C and left for 48 hours at room temperature. The hybrid composites contained fixed six layers of glass as a shell, three on each side, whereas the number of core kenaf layers was changed in three stages to get S1, S2, and S3 hybrid composites. Composites specimens with pure glass and kenaf were also fabricated for comparison. It was found that one kenaf layer replaced about 20% of total fiber weight fraction of the composite; this leads to reducing the density of final hybrid composite by 13%. Besides, in mechanical properties perspective, there are less than 1% reduction in compression strength and 40% in tensile strength when compared to pure glass composite. Generally, the results revealed that the best performance was observed in S1, which showed a good balance of all mechanical properties determined in this work.


2006 ◽  
Vol 505-507 ◽  
pp. 781-786
Author(s):  
Yi Che Lee ◽  
Fuh Kuo Chen

The springback behavior of an invar sheet and its perforated form were examined in the present study. The mechanical properties for invar sheet and perforated invar-sheet at elevated temperatures were first obtained from tensile tests. The test results suggest that both invar sheet and perforated invar-sheet have favorable formability at temperature higher than 200oC. An analytical model was also established to predict the springback of the invar sheet and its perforated form under bending conditions at various elevated temperatures. In order to verify the predicted results, the V-bending tests were conducted for the invar sheet at various temperatures ranging from room temperature to 300. The experimental data indicate that the springback decreases with the rise in temperature for both invar sheet and perforated invar-sheet. The good agreement between the experimental data and the predicted values confirms the validity of the proposed theoretical model as well.


Sign in / Sign up

Export Citation Format

Share Document