scholarly journals Prevalence, serovar, and antimicrobial resistance of Salmonella isolated from meat and minced meat used for production smoked sausage

2021 ◽  
Vol 854 (1) ◽  
pp. 012108
Author(s):  
E V Zaiko ◽  
D S Bataeva ◽  
Yu K Yushina ◽  
M A Grudistova ◽  
B Velebit

Abstract The objective of this study was to research the prevalence, serovars, and antimicrobial resistance profiles of Salmonella isolated from meat and minced meat used for the production of fermented sausage. A total of 116 samples were tested, and among them, 20 (17.2%) were positive. Salmonella was detected in 3 (10.3%) beef samples, 5 (19.2%) pork samples, and 6 (20.7%) poultry samples. In minced meat, the Salmonella prevalence was 18.8%. Salmonella enterica serovar Agama (5.2%) was the most commonly identified serovar, followed by S. Enteritidis (4.3%), S. Typhimurium (3.4%), S. Infantis (2.6%), and S. Lindenburg (1.7%). Most of the serovars identified in the present study are recognized as frequent causes of human salmonellosis. Thus, the presence of these serovars means foods with these meats are a likely source of human infections. We found the Salmonella isolates exhibited high rates of resistance to antimicrobials tetracycline, ampicillin, streptomycin, and ciprofloxacin. The highest level of resistance was to tetracycline (75%), followed by resistance to ampicillin (50%), streptomycin (30%), ciprofloxacin (20%), gentamicin (20%), and neomycin (10%). The high-level resistance observed for some of the serovars calls for concern. Salmonella with multidrug resistance in meat used to produce fermented sausages is considered a high additional risk for human health.

2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Yu-Ping Hong ◽  
Ying-Tsong Chen ◽  
You-Wun Wang ◽  
Bo-Han Chen ◽  
Ru-Hsiou Teng ◽  
...  

ABSTRACT We identified an erm42-carrying integrative and conjugative element, ICE_erm42, in 26.4% of multidrug-resistant Salmonella enterica serovar Albany isolates recovered from cases of human salmonellosis between 2014 and 2019 in Taiwan. ICE_erm42-carrying strains displayed high-level resistance to azithromycin, and the element could move into the phylogenetically distant species Vibrio cholerae via conjugation.


Author(s):  
P Salmerón ◽  
A Moreno-Mingorance ◽  
J Trejo ◽  
R Amado ◽  
B Viñado ◽  
...  

Abstract Background Neisseria gonorrhoeae (NG) isolates with high-level azithromycin resistance (HL-AziR) have emerged worldwide in recent decades, threatening the sustainability of current dual-antimicrobial therapy. Objectives This study aimed to characterize the first 16 NG isolates with HL-AziR in Barcelona between 2016 and 2018. Methods WGS was used to identify the mechanisms of antimicrobial resistance, to establish the MLST ST, NG multiantigen sequence typing (NG-MAST) ST and NG sequence typing for antimicrobial resistance (NG-STAR) ST and to identify the clonal relatedness of the isolates with other closely related NG previously described in other countries based on a whole-genome SNP analysis approach. The sociodemographic characteristics of the patients included in the study were collected by comprehensive review of their medical records. Results Twelve out of 16 HL-AziR isolates belonged to the MLST ST7823/NG-MAST ST5309 genotype and 4 to MLST ST9363/NG-MAST ST3935. All presented the A2059G mutation in all four alleles of the 23S rRNA gene. MLST ST7823/NG-MAST ST5309 isolates were only identified in men who have sex with women and MLST ST9363/NG-MAST ST3935 were found in MSM. Phylogenomic analysis revealed the presence of three transmission clusters of three different NG strains independently associated with sexual behaviour. Conclusions Our findings support the first appearance of three mild outbreaks of NG with HL-AziR in Spain. These results highlight the continuous capacity of NG to develop antimicrobial resistance and spread among sexual networks. The enhanced resolution of WGS provides valuable information for outbreak investigation, complementing the implementation of public health measures focused on the prevention and dissemination of MDR NG.


2019 ◽  
Vol 7 (11) ◽  
pp. 579 ◽  
Author(s):  
Jae-Ho Guk ◽  
Junhyung Kim ◽  
Hyokeun Song ◽  
Jinshil Kim ◽  
Jae-Uk An ◽  
...  

Campylobacter, a common foodborne human pathogen, is considered sensitive to oxygen. Recently, aerotolerant (AT) Campylobacter jejuni with the ability to survive under aerobic stress has been reported. Here, we investigated the prevalence of hyper-aerotolerant (HAT) Campylobacter coli from duck sources (118 carcasses and meat) and its characteristics to assess potential impacts on public health. Half of 56 C. coli isolates were HAT and most harbored various virulence genes including flaA, cadF, cdtA, ceuB, and wlaN. Moreover, 98.2% of C. coli isolates showed resistance to quinolones, including ciprofloxacin (CIP), and nine (16.1%) showed high-level resistance to ciprofloxacin (Minimum Inhibitory Concentration, MIC ≥ 32 μg/mL) and most of these were HAT. Based on genetic relatedness between C. coli from duck sources and those from human sources (PubMLST and NCBI), HAT isolates sharing the same MLST sequence types were significantly more prevalent than those not sharing the same sequence types as those from human sources. Therefore, HAT C. coli is prevalent in duck sources, and is most likely transmitted to humans through the food chain given its aerotolerance. This being so, it might pose a threat to public health given its virulence and antimicrobial resistance (AMR). This study will assist in improving control strategies to reduce farm-to-table HAT C. coli transmission to humans.


2010 ◽  
Vol 54 (6) ◽  
pp. 2728-2731 ◽  
Author(s):  
A. Morvan ◽  
C. Moubareck ◽  
A. Leclercq ◽  
M. Hervé-Bazin ◽  
S. Bremont ◽  
...  

ABSTRACT Susceptibility to antibiotics of 4,816 clinical L. monocytogenes strains isolated since 1926 was studied, and the temporal evolution of susceptibility to antibiotics was analyzed through several decades. The mechanisms of resistance in each resistant strain were studied. The prevalence of resistant strains was estimated at 1.27% among isolates from humans. Resistance to tetracyclines+ and fluoroquinolones was more common and has recently emerged. Although acquired resistance in clinical L. monocytogenes did not implicate clinically relevant antibiotics, the possibility of resistance gene transfers, the description of the first clinical isolate with high-level resistance to trimethoprim, and the recent increase in penicillin MICs up to 2 μg/ml reinforce the need for microbiological surveillance.


2011 ◽  
Vol 74 (10) ◽  
pp. 1639-1648 ◽  
Author(s):  
CINDY-LOVE TREMBLAY ◽  
ANN LETELLIER ◽  
SYLVAIN QUESSY ◽  
MARTINE BOULIANNE ◽  
DANIELLE DAIGNAULT ◽  
...  

This study was conducted to characterize the antimicrobial resistance determinants and investigate plasmid colocalization of tetracycline and macrolide genes in Enterococcus faecalis and Enterococcus faecium from broiler chicken and turkey flocks in Canada. A total of 387 E. faecalis and E. faecium isolates were recovered from poultry cecal contents from five processing plants. The percentages of resistant E. faecalis and E. faecium isolates, respectively, were 88.1 and 94% to bacitracin, 0 and 0.9% to chloramphenicol, 0.7 and 14.5% to ciprofloxacin, 72.6 and 80.3% to erythromycin, 3.7 and 41% to flavomycin, 9.6 and 4.3% (high-level resistance) to gentamicin, 25.2 and 17.1% (high-level resistance) to kanamycin, 100 and 94% to lincomycin, 0 and 0% to linezolid, 2.6 and 20.5% to nitrofurantoin, 3 and 27.4% to penicillin, 98.5 and 89.7% to quinupristin-dalfopristin, 7 and 12.8% to salinomycin, 46.7 and 38.5% (high-level resistance) to streptomycin, 95.6 and 89.7% to tetracycline, 73 and 75.2% to tylosin, and 0 and 0% to vancomycin. One predominant multidrug-resistant phenotypic pattern was identified in both E. faecalis and E. faecium (bacitracin, erythromycin, lincomycin, quinupristin-dalfopristin, tetracycline, and tylosin). These isolates were further examined by PCR and sequencing for the genes encoding their antimicrobial resistance. Various combinations of vatD, vatE, bcrR, bcrA, bcrB, bcrD, ermB, msrC, linB, tetM, and tetO genes were detected, and ermB, tetM, and bcrB were the most common antimicrobial resistance genes identified. For the first time, plasmid extraction and hybridization revealed colocalization of tetO and ermB genes on a ca. 11-kb plasmid in E. faecalis isolates, and filter mating experiments demonstrated its transferability. Results indicate that the intestinal enterococci of healthy poultry, which can contaminate poultry meat at slaughter, could be a reservoir for quinupristin-dalfopristin, bacitracin, tetracycline, and macrolide resistance genes.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 777
Author(s):  
Lu Han ◽  
Xiao-Qing Lu ◽  
Xu-Wei Liu ◽  
Mei-Na Liao ◽  
Ruan-Yang Sun ◽  
...  

We determined the prevalence and molecular characteristics of fosfomycin-resistant Escherichia coli from a domestic pigeon farm. A total of 79 samples collected from pigeons and their surrounding environments were screened for the presence of fosfomycin resistant isolates and these included 49 E. coli isolates that displayed high-level resistance (MIC ≥ 256 mg L−1) and carried the fosA3 gene on plasmids with sizes ranging from 80 to 370 kb. MLST analysis of these fosA3-positive E. coli isolates indicated the presence of nine sequence types (ST6856, ST8804, ST457, ST746, ST533, ST165, ST2614, ST362 and ST8805) of which ST6856 was the most prevalent (24.5%, 12/49). PFGE combined with genomic context comparative analyses indicated that the fosA3 gene was spread by horizontal transfer as well as via clonal transmission between E. coli in the pigeon farm, and IS26 played an important role in fosA3 transmission. The high prevalence of fosA3 in the pigeon farm and the high similarity of the fosA3 genomic environment between E. coli isolates from humans and pigeons indicated that the pigeon farm served as a potential reservoir for human infections. The pigeon farm was found to be an important reservoir for the fosA3 gene and this should be further monitored.


Antibiotics ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 58 ◽  
Author(s):  
Ranmini Kularatne ◽  
Venessa Maseko ◽  
Lindy Gumede ◽  
Tendesayi Kufa

Background: In South Africa, sexually transmitted infections (STIs) are managed through a syndromic approach at primary healthcare centres (PHCs). Neisseria gonorrhoeae is the predominant cause of male urethritis syndrome. We describe antimicrobial resistance patterns and trends in Neisseria gonorrhoeae during a ten-year surveillance period at a large PHC in Johannesburg. Methods: Neisseria gonorrhoeae was cultured from genital discharge swab specimens obtained from consenting adult patients presenting at the Alexandra Health Centre in Johannesburg between 2008 and 2017. Isolates were tested for antimicrobial susceptibility by Etest™ (cefixime, ceftriaxone, ciprofloxacin) or agar dilution (penicillin, tetracycline, azithromycin). Results: During the period of surveillance, high-level resistance prevalence increased from 30% to 51% for penicillin (p-value for trend < 0.001), 75% to 83% for tetracycline (p-value for trend = 0.008), and 25% to 69% for ciprofloxacin (p-value for trend < 0.001). Analysis did not reveal high-level resistance to spectinomycin or a minimum inhibitory concentration (MIC) creep for extended-spectrum cephalosporins, and the prevalence of intermediate-resistance to azithromycin was less than 5%. Conclusions: High prevalence resistance to penicillin, tetracycline, and ciprofloxacin in N. gonorrhoeae obviates their use in future national treatment algorithms for genital discharge. It is essential to continue monitoring for emerging resistance to currently recommended antimicrobial therapy in this rapidly evolving pathogen.


2010 ◽  
Vol 73 (8) ◽  
pp. 1430-1437 ◽  
Author(s):  
JUN MAN KIM ◽  
JOONBAE HONG ◽  
WONKI BAE ◽  
HYE CHEONG KOO ◽  
SO HYUN KIM ◽  
...  

The antibiotic resistance patterns and prevalence of the transferable tet(O) plasmid were investigated in Campylobacter jejuni and Campylobacter coli isolates from raw chicken, pork, and humans with clinical campylobacteriosis. A total of 180 C. jejuni and C. coli isolates were identified, and the prevalence rates of C. jejuni and C. coli in raw chicken samples were 83% (83 of 100) and 73% (73 of 100), respectively. Twelve percent (6 of 50) and 10% (5 of 50) of pork samples were contaminated with C. jejuni and C. coli, respectively. Disk diffusion susceptibility testing revealed that the most frequently detected resistance was to tetracycline (92.2%), followed by nalidixic acid (75.6%), ciprofloxacin (65.0%), azithromycin (41.5%), ampicillin (33.3%), and streptomycin (26.1%). Of the C. jejuni and C. coli isolates, 65.7% (n = 109) contained plasmids carrying the tet(O) gene. Six C. jejuni isolates and two C. coli isolates with high-level resistance to tetracycline (MIC = 256 μg/ml) harbored the tet(O) plasmid, which is transferable to other C. jejuni and C. coli isolates. These results demonstrate the presence of an interspecies transferable plasmid containing the tet(O) gene and a high prevalence of antibiotic resistance in Korean Campylobacter isolates and provide an understanding of the antibiotic resistance distribution among Campylobacter species in Korea.


2021 ◽  
Vol 22 (8) ◽  
pp. 3905
Author(s):  
Rustam Aminov

Understanding the mechanisms leading to the rise and dissemination of antimicrobial resistance (AMR) is crucially important for the preservation of power of antimicrobials and controlling infectious diseases. Measures to monitor and detect AMR, however, have been significantly delayed and introduced much later after the beginning of industrial production and consumption of antimicrobials. However, monitoring and detection of AMR is largely focused on bacterial pathogens, thus missing multiple key events which take place before the emergence and spread of AMR among the pathogens. In this regard, careful analysis of AMR development towards recently introduced antimicrobials may serve as a valuable example for the better understanding of mechanisms driving AMR evolution. Here, the example of evolution of tet(X), which confers resistance to the next-generation tetracyclines, is summarised and discussed. Initial mechanisms of resistance to these antimicrobials among pathogens were mostly via chromosomal mutations leading to the overexpression of efflux pumps. High-level resistance was achieved only after the acquisition of flavin-dependent monooxygenase-encoding genes from the environmental microbiota. These genes confer resistance to all tetracyclines, including the next-generation tetracyclines, and thus were termed tet(X). ISCR2 and IS26, as well as a variety of conjugative and mobilizable plasmids of different incompatibility groups, played an essential role in the acquisition of tet(X) genes from natural reservoirs and in further dissemination among bacterial commensals and pathogens. This process, which took place within the last decade, demonstrates how rapidly AMR evolution may progress, taking away some drugs of last resort from our arsenal.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Sofia Maraki ◽  
Ioannis S. Papadakis

The aim of the present study was to determine the antimicrobial resistance trends of respiratory tract pathogens isolated from patients with community-acquired respiratory tract infections (CARTIs) in Crete, Greece, over a 4-year period (2009–2012). A total of 588 community-acquired respiratory pathogens were isolated during the study period.Streptococcus pneumoniaewas the most common organism responsible for 44.4% of CARTIs, followed byHaemophilus influenzae(44.2%) andMoraxella catarrhalis(11.4%). AmongS. pneumoniae, the prevalence of isolates with intermediate- and high-level resistance to penicillin was 27.2% and 12.3%, respectively. Macrolide resistance slightly decreased from 29.4% over the period 2009-2010 to 28.8% over the period 2011-2012. Multiresistance was observed among 56 (54.4%) penicillin nonsusceptible isolates. A nonsignificant increase in resistance ofH. influenzaeisolates was noted forβ-lactams, cotrimoxazole, and tetracycline. Among the 67M. catarrhalistested, 32 produced beta-lactamase and were resistant to ampicillin. Macrolide resistance decreased over the study period. All isolates were susceptible to amoxicillin + clavulanic acid, chloramphenicol, rifampicin, and the fluoroquinolones. Although a decreasing trend in the prevalence of resistance of the three most common pathogens involved in CARTIs was noted, continuous surveillance of antimicrobial susceptibility at the local and national level remains important, in order to guide appropriate empirical antimicrobial therapy.


Sign in / Sign up

Export Citation Format

Share Document