scholarly journals Shoot initiation for Macadamia integrifolia explant with tissue culture technique

2021 ◽  
Vol 886 (1) ◽  
pp. 012133
Author(s):  
N A’ida ◽  
Wilda ◽  
S H Larekeng ◽  
I Iswanto ◽  
M A Arsyad

Abstract Macadamia nuts are grown in subtropical and tropical regions and endemic species in Greenland that can be commercially developed in Indonesia. Macadamia’s generative propagation tends to have problems in its seed stock. It often experiences obstacles in field seed stock, and the production requires a long time because it has a thick shell (pericarp). Macadamia initiation needs technology to prevent extinction. One of the propagation is through the technique culture in vitro. This research was conducted to determine the initial response of basic media and to know the response of Macadamia growth in vitro. This research used five media which are Media 1 (DKW with BAP 0.1 ppm, kinetin 0.1ppm), Media 2 (WPM with BAP 1 ppm), media 3 (DKW), media 4 (MS), media 5 (MS with BAP 0.5 ppm). The results showed that media 1 and 3 (DKW media) had a good response for leaf and shoot growth in macadamia explants.

2021 ◽  
Vol 4 (1) ◽  
pp. 82-92
Author(s):  
Rustikawati Rustikawati ◽  
Catur Herison ◽  
Entang Inoriah ◽  
Vera Dwisari

Curcuma sp has been widely investigated for its anti-cancer properties. Conventionally, vegetative propagation needs a long time to produce a large number of planting materials, so that it is necessary to find an alternative approach through in vitro propagation.  The effect of BAP on the in vitro shoot formation of ‘temu putih’ and ‘temu putih’ has been investigated in this study. The experiment was a 4x2 factorial with 5 replications arranged in a completely randomized design.  The first factor was the concentration of BAP i.e. 0, 1.5, 3, and 4.5 ppm.  The second factor was the curcuma species consisting of ‘temu putih’ (Curcuma zedoaria Roch.) and ‘temu mangga’ (Curcuma mangga Val.).  Each experimental unit consisted of 2 in vitro bottles, each of which planted with 1 explant bud.  Analysis of variance was conducted on percentage of live explants, shoot height, number of roots, root length, wet weight, percentage of explants that sprouted, percentage of rooted explants and shoot color.  Mean comparison was performed by the Least Significant Difference (LSD).  The results showed that there was no interaction between BAP concentration and genotype on any variable observed.  The shoot growth of ‘temu putih’ was significantly higher than ‘temu mangga’ in vitro.  The best concentration of BAP for the growth of ‘temu putih’ and ‘temu mangga’ shoots was 1.5 ppm.


HortScience ◽  
1999 ◽  
Vol 34 (2) ◽  
pp. 353-354 ◽  
Author(s):  
James R. Ault ◽  
Kayri Havens

Shoot explants from actively growing, greenhouse-maintained plants of Baptisia `Purple Smoke' were cultured in vitro for shoot initiation on Murashige and Skoog (MS) basal medium containing vitamins and supplemented with 30 g·L–1 sucrose, 8.87 μm BA, and 4.14 μm K-IBA. All subsequent media were supplemented with 2.47 mm NaH2PO4 to enhance shoot growth. Single-node explants were subcultured for shoot multiplication on MS medium with either no plant growth regulator or with 2.22, 4.44, 8.87, 17.74, or 35.48 mm BA in combination with 0.0 or 4.14 μm K-IBA. Explants produced a maximum of 4.1 shoots on the medium with 2.22 μm BA. Shoots rooted on all concentrations of K-IBA (2.07, 4.14, 10.36, or 20.72 μm) and K-NAA (2.23, 4.46, 11.15, or 22.29 μm) tested. Maximum rooting was 100% on MS medium with 11.15 μm K-NAA; however, this treatment induced copious stem callusing. Rooted shoots were greenhouse-acclimatized for 2.5 weeks. Overall survival was 86%. For optimal rooting and subsequent acclimatization, treatment with 2.23 μm K-NAA is recommended; this resulted in 83% rooting and 87% acclimatization. Chemical names used: N6 benzyladenine (BA); potassium salt of indole-3-butyric acid (K-IBA); potassium salt of 1-naphthalene acetic acid (K-NAA).


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 873E-873
Author(s):  
Sharon A. Bates ◽  
John E. Preece ◽  
John H. Yopp

Dissected white ash seeds were placed on an agar-solidified MS medium with 10 μM TDZ and 1 μM 2,4-D (shoot initiation medium). After 4 weeks, explants were transferred to shoot elongation medium (3 μM TDZ, 1 μM BA, and 1 μM IBA) solidified with 0.7% Sigma agar, 0.525% agar + 0.05% gelrite, 0.35% agar + 0.1% gelrite, 0.175% agar + 0.15% gelrite, 0.2% gelrite, or no gelling agent (liquid medium). After 12 weeks in vitro, shoot growth and number were suppressed in cultures containing 0.2% gelrite (9.3 mm and 0.7 shoots) and in cultures containing no gelling agent (6.9 mm and 0.7 shoots). There were no differences in shoot growth and number in cultures containing 0.7% Sigma agar (2.2 mm and 16.5 shoots), 0.525% agar + 0.05% gelrite (2.6 mm and 18.7 shoots), 0.35% agar + 0.1% gelrite (1.6 mm and 17.4 shoots), and 0.175% agar + 0.15% gelrite (2.0 mm and 20.4 shoots). The most vitrification occurred in cultures on medium with the lowest amount of agar, gelrite only, and liquid medium.


2018 ◽  
Vol 18 (6) ◽  
pp. 769-775 ◽  
Author(s):  
Dayun Yan ◽  
Jonathan H. Sherman ◽  
Michael Keidar

Background: Over the past five years, the cold atmospheric plasma-activated solutions (PAS) have shown their promissing application in cancer treatment. Similar as the common direct cold plasma treatment, PAS shows a selective anti-cancer capacity in vitro and in vivo. However, different from the direct cold atmospheric plasma (CAP) treatment, PAS can be stored for a long time and can be used without dependence on a CAP device. The research on PAS is gradually becoming a hot topic in plasma medicine. Objectives: In this review, we gave a concise but comprehensive summary on key topics about PAS including the development, current status, as well as the main conclusions about the anti-cancer mechanism achieved in past years. The approaches to make strong and stable PAS are also summarized.


2021 ◽  
Vol 11 (4) ◽  
pp. 1694
Author(s):  
Amna Komal Khan ◽  
Sidra Kousar ◽  
Duangjai Tungmunnithum ◽  
Christophe Hano ◽  
Bilal Haider Abbasi ◽  
...  

Flavonoids represent a popular class of industrially important bioactive compounds. They possess valuable health-benefiting and disease preventing properties, and therefore they are an important component of the pharmaceutical, nutraceutical, cosmetical and medicinal industries. Moreover, flavonoids possess significant antiallergic, antihepatotoxic, anti-inflammatory, antioxidant, antitumor, antiviral, and antibacterial as well as cardio-protective activities. Due to these properties, there is a rise in global demand for flavonoids, forming a significant part of the world market. However, obtaining flavonoids directly from plants has some limitations, such as low quantity, poor extraction, over-exploitation, time consuming process and loss of flora. Henceforth, there is a shift towards the in vitro production of flavonoids using the plant tissue culture technique to achieve better yields in less time. In order to achieve the productivity of flavonoids at an industrially competitive level, elicitation is a useful tool. The elicitation of in vitro cultures induces stressful conditions to plants, activates the plant defense system and enhances the accumulation of secondary metabolites in higher quantities. In this regard, nanoparticles (NPs) have emerged as novel and effective elicitors for enhancing the in vitro production of industrially important flavonoids. Different classes of NPs, including metallic NPs (silver and copper), metallic oxide NPs (copper oxide, iron oxide, zinc oxide, silicon dioxide) and carbon nanotubes, are widely reported as nano-elicitors of flavonoids discussed herein. Lastly, the mechanisms of NPs as well as knowledge gaps in the area of the nano-elicitation of flavonoids have been highlighted in this review.


1990 ◽  
Vol 18 (1_part_1) ◽  
pp. 243-250
Author(s):  
Dag Jenssen ◽  
Lennart Romert

To understand the cause of the biological effects of xenobiotic metabolism in mammals, investigators have traditionally performed animal experiments by comparing the results of biochemical methods, such as measurement of enzyme activity analysis of the metabolites produced, with the observed toxicological effect. This article deals with in vitro methods for genotoxicity combined with drug metabolising preparations at the organelle, cell or organ levels, as exemplified by microsome preparations, isolated cells/cell lines and organ perfusion systems, respectively. The advantage of some of these methods for studying metabolism-mediated mutagenicity is that the measured endpoint reflects not only the bioactivating phase I reactions, but also the detoxifying phase II reactions, and the transfer of the non-conjugated reactive metabolites to other cells and their ability to cause mutations in these cells. In vivo, all these events are important factors in the initiation of cancer. A mechanistic advantage of the methods for metabolism-mediated mutagenicity in vitro is that the relevance of the different steps in metabolism for the mutational events can seldom be investigated in an in vivo assay. Furthermore, human studies can easily be performed using the co-culture technique with isolated human cells or cell lines.


2021 ◽  
Vol 22 (3) ◽  
pp. 1455
Author(s):  
Varsha Garg ◽  
Aleksandra Hackel ◽  
Christina Kühn

In potato plants, the phloem-mobile miR172 is involved in the sugar-dependent transmission of flower and tuber inducing signal transduction pathways and a clear link between solute transport and the induction of flowering and tuberization was demonstrated. The sucrose transporter StSUT4 seems to play an important role in the photoperiod-dependent triggering of both developmental processes, flowering and tuberization, and the phenotype of StSUT4-inhibited potato plants is reminiscent to miR172 overexpressing plants. The first aim of this study was the determination of the level of miR172 in sink and source leaves of StSUT4-silenced as well as StSUT4-overexpressing plants in comparison to Solanum tuberosum ssp. Andigena wild type plants. The second aim was to investigate the effect of sugars on the level of miRNA172 in whole cut leaves, as well as in whole in vitro plantlets that were supplemented with exogenous sugars. Experiments clearly show a sucrose-dependent induction of the level of mature miR172 in short time as well as long time experiments. A sucrose-dependent accumulation of miR172 was also measured in mature leaves of StSUT4-silenced plants where sucrose export is delayed and sucrose accumulates at the end of the light period.


1998 ◽  
Vol 22 ◽  
pp. 238-240
Author(s):  
L. R. Ndlovu ◽  
L. Hove

Browse species are important food resources in semi-arid areas, especially during the dry season when the nutritive value of grass is at its lowest. However, browse plants often contain secondary plant compounds which limit their nutritive value. Proanthocyanidins (PAs) (also called condensed tannins) and related flavonoids are a common constituent of woody plants in tropical regions (Mangan, 1988). PAs cause a bitter and astringent taste which lowers food palatability and they also lower the digestibility of proteins and carbohydrates (Jacksonet al., 1996). PAs also interfere with current chemical methods that are used for estimating nutritive value of foods (Reed, 1995). Biological assays, especially ,in vitrotechniques, have a potential to reflect better the nutritive value of foods that contain PAs. Thein vitrogas production technique has been found to reliably predict the nutritive value of temperate forages (Makkaret al., 1996). There has been limited research on its efficacy with tropical forages. The experiment reported here was conducted to test the hypothesis that gas production of tropical browse species reflects their content of fibre, protein and/or PAs.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii17-ii18
Author(s):  
Masum Rahman ◽  
Ian E Olson ◽  
Rehan Saber ◽  
Jibo Zhang ◽  
Lucas P Carlstrom ◽  
...  

Abstract BACKGROUND Glioblastoma is a fatal infiltrative primary brain tumor, and standard care includes maximal safe surgical resection followed by radiation and Temozolomide (TMZ). Therapy-resistant residual cells persist in a latent state a long time before inevitable recurrence. Conventional radiation and Temozolomide (TMZ) treatment cause oxidative stress and DNA damage resulting senescent-like state of cell-cycle arrest. However, increasing evidence demonstrates escaping senescence leads to tumor recurrence. Thus, the ablation of senescent tumor cells after chemoradiation may be an avenue to limit tumor recurrence. METHODS 100uM TMZ for 7days or 10-20Gy radiation (cesium gamma radiator) was used for senescence induction in human glioblastoma in vitro and confirmed by SA-Beta gal staining and PCR. Replication arrest assessed by automated quantification of cellular confluence (Thermo Scientific Series 8000 WJ Incubator). We evaluated the IC50 for several senolytics targeting multiple SCAPs, including Dasatinib, Quercetin, AMG-232, Fisetin, Onalespib, Navitoclax, and A1331852, and in senescent vs. proliferating cells. RESULTS Among the senolytic tested, the Bcl-XL inhibitors A1331852 and Navitoclax both shown senolytic effect by selectively killing radiated, senescent tumor cells at lower concentrations as compared to 0Gy treated non-senescent cells. Across 12 GBM cell lines, IC50 for senescent cells was 6–500 times lower than non-senescent GBM(p< 0.005). Such differential sensitivity to Bcl-XL inhibition after radiation has also observed by BCL-XL knockdown in radiated glioma. CONCLUSION These findings suggest the potential to harness radiation-induced biology to ablate surviving quiescent cells and demonstrate Bcl-XL dependency as a potential vulnerability of surviving tumor cells after exposure to chemoradiation.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1451
Author(s):  
Carolina Romeiro Fernandes Chagas ◽  
Josef Harl ◽  
Vytautas Preikša ◽  
Dovilė Bukauskaitė ◽  
Mikas Ilgūnas ◽  
...  

Recent studies confirmed that some Hepatozoon-like blood parasites (Apicomplexa) of birds are closely related to the amphibian parasite Lankesterella minima. Little is known about the biology of these pathogens in birds, including their distribution, life cycles, specificity, vectors, and molecular characterization. Using blood samples of 641 birds from 16 species, we (i) determined the prevalence and molecular diversity of Lankesterella parasites in naturally infected birds; (ii) investigated the development of Lankesterella kabeeni in laboratory-reared mosquitoes, Culex pipiens forma molestus and Aedes aegypti; and (iii) tested experimentally the susceptibility of domestic canaries, Serinus canaria, to this parasite. This study combined molecular and morphological diagnostic methods and determined 11% prevalence of Lankesterella parasites in Acrocephalidae birds; 16 Lankesterella lineages with a certain degree of host specificity and two new species (Lankesterella vacuolata n. sp. and Lankesterella macrovacuolata n. sp.) were found and characterized. Lankesterella kabeeni (formerly Hepatozoon kabeeni) was re-described. Serinus canaria were resistant after various experimental exposures. Lankesterella sporozoites rapidly escaped from host cells in vitro. Sporozoites persisted for a long time in infected mosquitoes (up to 42 days post exposure). Our study demonstrated a high diversity of Lankesterella parasites in birds, and showed that several avian Hepatozoon-like parasites, in fact, belong to Lankesterella genus.


Sign in / Sign up

Export Citation Format

Share Document