scholarly journals Isolation and screening of local cellulolytic fungi from the digestive tract larvae of Oryctes rhinoceros L., North Sumatra

2021 ◽  
Vol 912 (1) ◽  
pp. 012047
Author(s):  
A F Nasution ◽  
E Munir ◽  
D Suryanto

Abstract Cellulose, which is the main component of plant cell walls from higher plants, has been studied from different aspects. It is insoluble in a wide variety of solvents and is resistant to various chemicals treatments. Fungi are a group of cellulose-degrading microbes and plays major role in recycling of lignocellulosic material in nature. This study aimed to obtain cellulolytic fungi from the digestive tract of Oryctes rhinoceros L. larvae and to determine cellulolytic activity. Isolation and screening of cellulolytic fungi in the digestive tract of insects were carried out with specific medium Carboxymethyl Cellulose (CMC) and the Congo Red method to obtain potential cellulolytic isolates. Eleven fungal isolates showed positive results as cellulolytic fungi. The highest cellulolytic activity was obtained from isolate F05L with a cellulolytic index of 0.90 and isolate F10L of 0.66. The smallest cellulolytic activity was obtained from isolate F02L with a cellulolytic index of 0.14. All isolates would be identified to the species level and analyzed its potential applications. Our result can provide in addition to the environmental and industrial fields, cellulolytic fungi can a solution to the problem of pollution, namely reducing the amount of cellulose waste, and can be added value to the use of waste into processed organic fertilizers to be able to provide solutions to the problem of organic waste degradation.

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1498
Author(s):  
Lucija Galić ◽  
Marija Špoljarević ◽  
Elizabeta Jakovac ◽  
Boris Ravnjak ◽  
Tihana Teklić ◽  
...  

Climate change poses a serious threat to agricultural production. Water deficit in agricultural soils is one of the consequences of climate change that has a negative impact on crop growth and yield. Selenium (Se) is known to be involved in plant defense against biotic and abiotic stress through metabolic, structural, and physiological activity in higher plants. The aim of this study was to investigate the physiological response of Se-biofortified soybean (Glycine max (L.) Merrill) seedlings under osmotic stress. For this research, we used biofortified soybean grain obtained after foliar Se biofortification in 2020. The experiment was conducted in a growth chamber with two cultivars (Lucija and Sonja) grown on filter paper in three replicates. The experiment was carried out with two watering treatments: distilled water (PEG-0) and 2.5% polyethylene glycol 6000 (PEG-2.5) on Se-biofortified seeds (Se) and nonbiofortified seeds (wSe). Contents of lipid peroxidation product (LP), free proline (PRO), total phenolic content (TP), ferric reducing antioxidant power (FRAP), and ascorbic acid (AA) were analyzed in 7-days-old seedlings. Significant differences were detected in the Se content of soybean grains between the two cultivars. A milder reaction to PEG-2.5 was observed in cultivar Lucija in both Se and wSe treatments, which might represent the mitigating effects of Se on osmotic stress in this cultivar. Contrarily, in cultivar Sonja, Se adversely affected all analyzed traits in the PEG-2.5 treatment. Ultimately, Se is a pro-oxidant in Sonja, whereas it represents an anti-oxidant in Lucija. In conclusion, different soybean cultivars show contrasting physiological reactions to both osmotic stress and Se. However, the activation of antioxidant pathways in Sonja can also be interpreted as added value in soybean seedlings as a functional food.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1396
Author(s):  
Z. N. Diyana ◽  
R. Jumaidin ◽  
Mohd Zulkefli Selamat ◽  
Ihwan Ghazali ◽  
Norliza Julmohammad ◽  
...  

Thermoplastic starch composites have attracted significant attention due to the rise of environmental pollutions induced by the use of synthetic petroleum-based polymer materials. The degradation of traditional plastics requires an unusually long time, which may lead to high cost and secondary pollution. To solve these difficulties, more petroleum-based plastics should be substituted with sustainable bio-based plastics. Renewable and natural materials that are abundant in nature are potential candidates for a wide range of polymers, which can be used to replace their synthetic counterparts. This paper focuses on some aspects of biopolymers and their classes, providing a description of starch as a main component of biopolymers, composites, and potential applications of thermoplastics starch-based in packaging application. Currently, biopolymer composites blended with other components have exhibited several enhanced qualities. The same behavior is also observed when natural fibre is incorporated with biopolymers. However, it should be noted that the degree of compatibility between starch and other biopolymers extensively varies depending on the specific biopolymer. Although their efficacy is yet to reach the level of their fossil fuel counterparts, biopolymers have made a distinguishing mark, which will continue to inspire the creation of novel substances for many years to come.


2020 ◽  
pp. 77-87
Author(s):  
Ivan I. Lishtvan ◽  
Boris V. Kurzo ◽  
Oleg M. Gaidukevich ◽  
Alexandr I. Sorokin

The results of the study of the resource potential of Lelchitsky and adjacent regions are presented. It is shown that the raw materials for the production of crushed stone and natural stone in the amount of 1 million m3 is actively extracted in the region with the prospect of volume increasing up to 10 million m3. In addition, peat and sapropel are mined for the production of organic fertilizers, feed additives and drilling fluids. Brown coal and bentonite clay deposits are promising for mining. Peat, sapropel and brown coal should be considered to be raw materials for complex deep processing with the release of more products and materials with high added value. The obtained results allow to conclude that the development of Lelchitsky region and the economic feasibility of building Polesie section of the railway is possible only through integrated development and the most complete use of the entire resource base of the region.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2867
Author(s):  
Rui Ferreira ◽  
Sílvia Lourenço ◽  
André Lopes ◽  
Carlos Andrade ◽  
José S. Câmara ◽  
...  

Worldwide, the food industry generates a large number of by-products from a wide variety of sources. These by-products represent an interesting and economical source of added value components with potential functionalities and/or bioactivities, which might be explored for industrial purposes, encouraging and promoting the circular economy concept. In this context, the current work aimed to evaluate the fatty acids (FAs) profile using gas chromatography–flame ionization detector (GC–FID) and Fourier Transform Infrared (FTIR), as well as the determination of related health lipid indices (e.g., atherogenic (AI) and thrombogenic (TI)) as a powerful strategy to investigate the potential applications of different agri-food by-products for human nutrition and animal feeding. This work results showed that polyunsaturated fatty acids (PUFAs) are the predominant group in grape pomace (72.7%), grape bunches (54.3%), and brewer’s spent grain (BSG, 59.0%), whereas carrot peels are dominated by monounsaturated fatty acids (MUFAs, 47.3%), and grape stems (46.2%), lees (from 50.8 to 74.1%), and potato peels (77.2%) by saturated fatty acids (SFAs). These findings represent a scientific basis for exploring the nutritional properties of agri-food by-products. Special attention should be given to grape pomace, grape bunches, and BSG since they have a high content of PUFAs (from 54.3 to 72.7%) and lower AI (from 0.11 to 0.38) and TI (from 0.30 to 0.56) indexes, suggesting their potential to provide a variety of health benefits against cardiovascular diseases including well-established hypotriglyceridemia and anti-inflammatory effects, products to which they are added.


The discovery of enzymes with lipolytic activities in all kingdoms of life from prokaryote to eukaryote species raises the possibility of the presence of an evolutionary relationship history of these proteins among many species of various living organisms. The chapter suggests a strategy based on the phylogenetic distribution and homology conservation in plant lipolytic enzymes for possible depiction of their biological evolution. Extensive databases and online resources for lipidomics and related areas are useful tools to analyze the different lipolytic enzymes in the three major super kingdoms of life, including higher plants kingdom and confined organisms such as algae that have recently gained much interest due to their promising potential applications in lipids hydrolysis and biosynthesis. Multiple sequence alignments of the identified lipolytic enzymes from databases could serve to the identification of globally conserved residues as well as conserved sequence motifs. Estimation of evolutionary distance between the various identified lipolytic enzymes could also be carried out to better understand the pattern of evolution.


2020 ◽  
Vol 8 ◽  
Author(s):  
Cristina Belda Marín ◽  
Vincent Fitzpatrick ◽  
David L. Kaplan ◽  
Jessem Landoulsi ◽  
Erwann Guénin ◽  
...  

Silk fibroin (SF) is a natural protein largely used in the textile industry but also in biomedicine, catalysis, and other materials applications. SF is biocompatible, biodegradable, and possesses high tensile strength. Moreover, it is a versatile compound that can be formed into different materials at the macro, micro- and nano-scales, such as nanofibers, nanoparticles, hydrogels, microspheres, and other formats. Silk can be further integrated into emerging and promising additive manufacturing techniques like bioprinting, stereolithography or digital light processing 3D printing. As such, the development of methodologies for the functionalization of silk materials provide added value. Inorganic nanoparticles (INPs) have interesting and unexpected properties differing from bulk materials. These properties include better catalysis efficiency (better surface/volume ratio and consequently decreased quantify of catalyst), antibacterial activity, fluorescence properties, and UV-radiation protection or superparamagnetic behavior depending on the metal used. Given the promising results and performance of INPs, their use in many different procedures has been growing. Therefore, combining the useful properties of silk fibroin materials with those from INPs is increasingly relevant in many applications. Two main methodologies have been used in the literature to form silk-based bionanocomposites: in situ synthesis of INPs in silk materials, or the addition of preformed INPs to silk materials. This work presents an overview of current silk nanocomposites developed by these two main methodologies. An evaluation of overall INP characteristics and their distribution within the material is presented for each approach. Finally, an outlook is provided about the potential applications of these resultant nanocomposite materials.


2020 ◽  
Vol 12 (8) ◽  
pp. 3301
Author(s):  
Sara M. Andrés-Vizán ◽  
Joaquín M. Villanueva-Balsera ◽  
J. Valeriano Álvarez-Cabal ◽  
Gemma M. Martínez-Huerta

In the process of converting pig iron into steel, some co-products are generated—among which, basic oxygen furnace (BOF) slag is highlighted due to the great amount generated (about 126 kg of BOF slag per ton of steel grade). Great efforts have been made throughout the years toward finding an application to minimize the environmental impact and to increase sustainability while generating added value. Finding BOF slag valorization is difficult due to its heterogeneity, strength, and overall swallowing, which prevents its use in civil engineering projects. This work is focused on trying to resolve the heterogeneity issue. If many different types of steel are manufactured, then different types of slag could also be generated, and for each type of BOF slag, there is an adequate valorization option. Not all of the slag can be valorized, but it can be a tool for reducing the amount that must go to landfill and to minimize the environmental impact. An analysis by means of data mining techniques allows a classification of BOF slag to be obtained, and each one of these types has a better adjustment to certain valorization alternatives. In the plant used as an example of the application of these studies, eight different slag clusters were obtained, which were then linked to their different potential applications with the aim of increasing the amount valorized.


2016 ◽  
Vol 15 (2) ◽  
pp. 122-132
Author(s):  
Jana Moravčíková ◽  
Denisa Margetínyová ◽  
Zdenka Gálová ◽  
Iwona Žur ◽  
Zuzana Gregorová ◽  
...  

Abstract The (1,3)-β-D-glucan also referred to as callose is a main component of cell walls of higher plants. Many physiological processes are associated with the changes in callose deposition. Callose is synthesised by the callose synthase complex while its degradation is regulated by the hydrolytic enzymes β-1,3-glucanases. The latter one specifically degrade (1,3)-β-D-glucans. This work is aimed to study β-1,3-glucanase activities in the leaves of plants at two leaf stage in two diploids (Agilops tauschii, Triticum monococcum L.), four tetraploids (Ae. cylindrica, Ae. triuncialis, T. araraticum, T. dicoccum) and two hexaploids (T. aestivum L, T. spelta L.). The leaves were subjected to qualitative and quantitative β-1,3-glucanase activity assays. Our results showed that the total β-1,3-glucanase activities were variable and genotype dependent. No significant correlation between β-1,3-glucanase activities and ploidy level was observed. The gel activity assays revealed a single fraction of ~52 kDa Glu1 that was found in all genotypes. The Glu1 fraction corresponds to a single or two acidic Glu isoforms in dependence on genotype. However, none of the acidic Glu fractions can be assigned as a specific for di-, tetra- or hexaploid genotypes. A single basic GluF isoform was detected and found as present in all genotypes.


2017 ◽  
Vol 24 (4) ◽  
pp. 585-590 ◽  
Author(s):  
Krzysztof Mleczko ◽  
Piotr Ptak ◽  
Zbigniew Zawiślak ◽  
Marcin Słoma ◽  
Małgorzata Jakubowska ◽  
...  

AbstractGraphene is a very promising material for potential applications in many fields. Since manufacturing technologies of graphene are still at the developing stage, low-frequency noise measurements as a tool for evaluating their quality is proposed. In this work, noise properties of polymer thick-film resistors with graphene nano-platelets as a functional phase are reported. The measurements were carried out in room temperature. 1/f noise caused by resistance fluctuations has been found to be the main component in the specimens. The parameter values describing noise intensity of the polymer thick-film specimens have been calculated and compared with the values obtained for other thick-film resistors and layers used in microelectronics. The studied polymer thick-film specimens exhibit rather poor noise properties, especially for the layers with a low content of the functional phase.


2021 ◽  
Author(s):  
Regina Menino ◽  
Daniel Murta

Following the evolution of composting technology, the process of digestion of a biological substrate by insects (entomocomposting) represents the last stage; however, from its initial context of producing an organic fertilizer, the role of entomocomposting has been imposing itself (due to increasing demographic pressure) mainly in the safe disposal of organic waste (in rampant growth) and in the breeding of insects for food and feed, for the sake of food security. Both these last goals converge in the first, as the safest disposal of the compost is its use as organic fertilizer; but the organic substrates are of a diversified nature, as are the species of insects which have already proved themselves in entomocomposting; hence, for each of the purposes in view, the choice is vast and, in the same way, the entomocompost composition is wide-ranging. Furthermore, various types of organic substrates, in addition to a microbial flora with symbiotic effects, may sometimes be able to transmit to the frass a harmful load of heavy metals and/or, depending on the composting insect agents, the presence of microorganisms harmful to crops and to humans and animals; in these situations, the former should be encouraged, and the latter counteracted through appropriate composting technology. Directives and legislation in this area, if properly considered, constitute a fundamental basis for ensuring the appropriate use of this particular kind of organic fertilizer. Apart from the production of insects for food and feed, where the choice of which insect is determined at the outset, the preference for the insect to be used in entomocomposting should be considered according to its proficiency in biological digestion of the organic substrates available for this purpose and the fertilizing quality of the frass produced. Although a multitude of species have been evaluated, to date, for the digestion of organic substrates, most have been used in assessing their specific potential for certain functionalities of frass related to crop nutrition and health, but there are few which, either by prolificacy, proficiency or rapidity in digesting substrates, exhibit capacity to compete in rural environment; nevertheless, new species could be evaluated in the framework of the research of competitors for entomocomposting of all or each substrate type and for each of the main anticipated objectives, meanwhile, genetic improvement to obtain new strains specialized for different organic substrates has already started to take its first steps. In addition to the binomial “insect x substrate” the composting technology constitutes the third fundamental factor for the efficiency of the process. Insects use as a composting agent has been suggested several decades ago, but it was only in the last decade that this process grown from the garden to the factory. Within rural areas, entomocomposting could play a key role within a circular economy, where recycling and reusing potentially polluting wastes safely returns to the land the enduring fertility that enables the sustained production that generated them, requiring no particularly upscale installations, equipment or technical training; it can, therefore, be adapted to any size of agricultural holding, from smallholdings to large industrial holdings, on the other hand, and in order to obtain a controlled production and high quality entomocompost, it is needed to implement industrial technologies and the composting unit can achieve a very high production per square meter, comparing with traditional composting methods. However, whether from the perspective of agriculture, livestock or forestry, the production of waste for entomocomposting always falls far short of the necessary scale, and therefore always requiring the use of biodigested organic waste from agricultural industries, provided that the necessary precautions are taken; in any case, it always constitutes added value, due to the products it generates, in addition to the inestimable value of the productive disposal of potentially polluting products. Despite all the advantages mentioned above, the controversy over the organic vs. mineral fertilizer option persists, often fuelled by myths on both sides, but the successes already achieved with insect entomocomposts, such as the black soldier fly (Hermetia illucens L.) or the mealworm (Tenebrio molitor L.), in field trials, which are gradually adding up, anticipate an important role for insects in safeguarding global food and environmental security.


Sign in / Sign up

Export Citation Format

Share Document