scholarly journals Evaluation of the Free Swell and Physio-chemical Properties of Black Cotton Soil Treated with Bacillus Coagulans

2021 ◽  
Vol 1036 (1) ◽  
pp. 012030
Author(s):  
A O Eberemu ◽  
A B Bassey ◽  
K J Osinubi
2018 ◽  
Vol 2 (2) ◽  
Author(s):  
J. Karthick ◽  
Ramkumar Thulasiram ◽  
S. Rajesh ◽  
M. Saravana Kumar ◽  
M. Thinakaranraj ◽  
...  

The objective of this paper is to determine the optimum fly ash content at which soil behavior is improved. Soil improvement is termed as soil stabilization. Soil stabilization depends on factors such as unconfined compression, cohesion, shear load, consolidation and permeability of soil and CBR value of soil. Fly ash is a thermal waste. Nearly half of the fly ash generated is not been used, hence usage of fly ash will reduce waste. Test conducted were sieve analysis, specific gravity, standard proctor compaction, unconfined compression, direct shear, free swell index, variable head permeability and consolidation for black cotton soil. Test also was conducted on soil replaced with fly ash in the level of 5%, 10% and 15%. Among the various replacement tried out, better results were observed for soil replaced with 10% of fly ash. Beyond the 10% level of replacement a reduction in performance was observed. Hence fly ash can be used for soil stabilization up to 10% replacement.


Author(s):  
Farhan KHAN ◽  
Bhumika DAS ◽  
Nomesh DEWANGAN

This study was conducted to have a detailed analysis of the geotechnical properties of expansive soil and fly ash from Sipat thermal power plant. It reported the findings of laboratory studies on certain common physical and geotechnical properties. The chemical properties and morphology of the black cotton soil (BCS) and fly ash is also determined using scanning electron microscopy and X-ray diffraction test. The geotechnical test includes determining specific gravity, particle size distribution, moisture content, standard proctor test, free swell index, and Atterberg’s limit. The different compositions of expansive soil with fly ash, yellow soil, moorum, and sand are studied. BCS was evaluated with fly ash, fly ash and sand, BCS with yellow soil, and moorum and fly ash. The study also analyzed the details and results of different tests conducted on soil samples. The results showed that strength and fly ash are inversely proportional; as fly ash increases, strength decreases, and vice versa. Fly ash was added from 20 to 80 % by replacing expansive soil by weight. The results indicated that expansive soil can be stabilized by the addition of fly ash to a limit of 10 to 20 %. HIGHLIGHTS The XRD And SEM results shows the mineral present in the FlyAsh and Expansive soil The geotechnical properties of Flyash and expansive soil is determined The OMC increases with decrease in densities The Particle size distribution curve shows the soil is GW soil GRAPHICAL ABSTRACT


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


Author(s):  
Sydney S. Breese ◽  
Howard L. Bachrach

Continuing studies on the physical and chemical properties of foot-and-mouth disease virus (FMDV) have included electron microscopy of RNA strands released when highly purified virus (1) was dialyzed against demlneralized distilled water. The RNA strands were dried on formvar-carbon coated electron microscope screens pretreated with 0.1% bovine plasma albumin in distilled water. At this low salt concentration the RNA strands were extended and were stained with 1% phosphotungstic acid. Random dispersions of strands were recorded on electron micrographs, enlarged to 30,000 or 40,000 X and the lengths measured with a map-measuring wheel. Figure 1 is a typical micrograph and Fig. 2 shows the distributions of strand lengths for the three major types of FMDV (A119 of 6/9/72; C3-Rezende of 1/5/73; and O1-Brugge of 8/24/73.


Author(s):  
H. Gross ◽  
H. Moor

Fracturing under ultrahigh vacuum (UHV, p ≤ 10-9 Torr) produces membrane fracture faces devoid of contamination. Such clean surfaces are a prerequisite foe studies of interactions between condensing molecules is possible and surface forces are unequally distributed, the condensate will accumulate at places with high binding forces; crystallites will arise which may be useful a probes for surface sites with specific physico-chemical properties. Specific “decoration” with crystallites can be achieved nby exposing membrane fracture faces to water vopour. A device was developed which enables the production of pure water vapour and the controlled variation of its partial pressure in an UHV freeze-fracture apparatus (Fig.1a). Under vaccum (≤ 10-3 Torr), small container filled with copper-sulfate-pentahydrate is heated with a heating coil, with the temperature controlled by means of a thermocouple. The water of hydration thereby released enters a storage vessel.


Author(s):  
E.D. Boyes ◽  
P.L. Gai ◽  
D.B. Darby ◽  
C. Warwick

The extended crystallographic defects introduced into some oxide catalysts under operating conditions may be a consequence and accommodation of the changes produced by the catalytic activity, rather than always being the origin of the reactivity. Operation without such defects has been established for the commercially important tellurium molybdate system. in addition it is clear that the point defect density and the electronic structure can both have a significant influence on the chemical properties and hence on the effectiveness (activity and selectivity) of the material as a catalyst. SEM/probe techniques more commonly applied to semiconductor materials, have been investigated to supplement the information obtained from in-situ environmental cell HVEM, ultra-high resolution structure imaging and more conventional AEM and EPMA chemical microanalysis.


Author(s):  
Kenneth R. Lawless

One of the most important applications of the electron microscope in recent years has been to the observation of defects in crystals. Replica techniques have been widely utilized for many years for the observation of surface defects, but more recently the most striking use of the electron microscope has been for the direct observation of internal defects in crystals, utilizing the transmission of electrons through thin samples.Defects in crystals may be classified basically as point defects, line defects, and planar defects, all of which play an important role in determining the physical or chemical properties of a material. Point defects are of two types, either vacancies where individual atoms are missing from lattice sites, or interstitials where an atom is situated in between normal lattice sites. The so-called point defects most commonly observed are actually aggregates of either vacancies or interstitials. Details of crystal defects of this type are considered in the special session on “Irradiation Effects in Materials” and will not be considered in detail in this session.


Author(s):  
Frances M. Ross ◽  
Peter C. Searson

Porous semiconductors represent a relatively new class of materials formed by the selective etching of a single or polycrystalline substrate. Although porous silicon has received considerable attention due to its novel optical properties1, porous layers can be formed in other semiconductors such as GaAs and GaP. These materials are characterised by very high surface area and by electrical, optical and chemical properties that may differ considerably from bulk. The properties depend on the pore morphology, which can be controlled by adjusting the processing conditions and the dopant concentration. A number of novel structures can be fabricated using selective etching. For example, self-supporting membranes can be made by growing pores through a wafer, films with modulated pore structure can be fabricated by varying the applied potential during growth, composite structures can be prepared by depositing a second phase into the pores and silicon-on-insulator structures can be formed by oxidising a buried porous layer. In all these applications the ability to grow nanostructures controllably is critical.


Author(s):  
O. Popoola ◽  
A.H. Heuer ◽  
P. Pirouz

The addition of fibres or particles (TiB2, SiC etc.) into TiAl intermetallic alloys could increase their toughness without compromising their good high temperature mechanical and chemical properties. This paper briefly discribes the microstructure developed by a TiAl/TiB2 composite material fabricated with the XD™ process and forged at 960°C.The specimens for transmission electron microscopy (TEM) were prepared in the usual way (i.e. diamond polishing and argon ion beam thinning) and examined on a JEOL 4000EX for microstucture and on a Philips 400T equipped with a SiLi detector for microanalyses.The matrix was predominantly γ (TiAl with L10 structure) and α2(TisAl with DO 19 structure) phases with various morphologies shown in figure 1.


Author(s):  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Biomimetics involves investigation of structure, function, and methods of synthesis of biological composite materials. The goal is to apply this information to the design and synthesis of materials for engineering applications.Properties of engineering materials are structure sensitive through the whole spectrum of dimensions from nanometer to macro scale. The goal in designing and processing of technological materials, therefore, is to control microstructural evolution at each of these dimensions so as to achieve predictable physical and chemical properties. Control at each successive level of dimension, however, is a major challenge as is the retention of integrity between successive levels. Engineering materials are rarely fabricated to achieve more than a few of the desired properties and the synthesis techniques usually involve high temperature or low pressure conditions that are energy inefficient and environmentally damaging.In contrast to human-made materials, organisms synthesize composites whose intricate structures are more controlled at each scale and hierarchical order.


Sign in / Sign up

Export Citation Format

Share Document