scholarly journals Carbon footprint of a multi-storied residential building during the construction process

2021 ◽  
Vol 1197 (1) ◽  
pp. 012022
Author(s):  
M P Bhorkar ◽  
P Choudhary ◽  
A Chawhan ◽  
A Bijwe ◽  
K Devgade

Abstract Construction Industry indicates development of the country and it helps in the economic growth which adds productivity and quality of life of citizens. During the manufacturing and the construction processes, there is use and combustion of fossil fuels which results total 39% of total carbon footprint. So, studying carbon footprint for construction companies becomes very important. Many different studies are carried out with giving number of alternatives to reduce the amount of carbon footprint. However, this research is focused mainly on multi-storeyed residential building in renowned city in India, shows the carbon emissions produced by a construction activity right from the material production to the actual execution process. Different Greenhouse gases contributing carbon footprint were also studied & incorporated. Various activities accounting to emissions were listed and their carbon footprint value (in the form of Carbon Dioxide equivalent) was calculated by bottom-up method. The manufacturing of various construction materials and usage of electricity during execution phases of a building causes very bad impact on the environment. The greatest contributors of the carbon footprint are onsite electricity use and building materials manufacturing. Therefore, use of green concrete, renewable energy, prefabricated construction materials and low emission construction equipment & vehicles can help in reducing the values of Carbon Footprint by the construction industry.

2021 ◽  
Author(s):  
S. Gunathilake ◽  
◽  
T. Ramachandra ◽  
U.G.D. Madushika ◽  
◽  
...  

The construction industry is one of the major contributors that emits carbon into the environment. When considering the carbon emission in the local context, even though there are Input-Output Tables (IOTs) that applies to all types of industries in Sri Lanka, there seems to be limited focuses on IOTs specifically relating to the construction activities which is vital for the need due to its outstanding contribution to the carbon footprint of Sri Lanka. Hence, this study aims to calculate the carbon footprint construction activities in Sri Lanka using IOT with a bottom-up approach. The required data were extracted from published documents of Survey of Construction Industry by Census and Statistics, and The Inventory of Carbon and Energy (ICE) database of UK. Carbon footprint of construction activities were calculated using IOT with a bottom-up approach. The analysis revealed that the road and railway sector have the highest contribution of 48% to the monetary value of the construction industry meanwhile it accounts for 44% of the highest carbon emission to the atmosphere in the year 2020. Subsequently, activities related to non-residential residential, and utilities contribute to 20%, 15%, and 12% of total carbon emission respectively. In terms of construction materials, cement-based activities (59%) were the highest contributor while rubble and metal-based (23%), and iron and steel-based activities (17%) were next level contributors to the carbon emission due to construction. The analysis concluded that the as the initiatives, public sector projects including road and railway sector and utilities should integrate more sustainable construction practices as they are responsible for more than 50% of carbon emission.


Author(s):  
Liudmila Kalinichenko ◽  
Zinenko Konstantin

The article deals with the current state of the construction industry for the period 2018-2020, and its significance for the economy of Ukraine is determined. The general trends of construction development in the modern transformational economic environment have been revealed here. The contribution and share of construction in the total GDP of the country are studied. The volumes of the construction production are analyzed, and after a deep review of indicators and rates dealing with construction products output, it is determined that the construction industry is developing steadily. The role of the state in creating a conducive investment climate in Ukraine is determined, and capital investments in construction are analyzed, and their share in the total capital is allocated. The sales volumes of building materials, the number of construction companies, and the population engaged in the construction sector are analyzed. The authors noted the necessity of normative regulation of construction activity, development, and implementation of state programs on development and support of the construction industry. The main problems of construction companies that have arisen after the introduction of a quarantine regime caused by the COVID-19 pandemic have received much attention. It is noted that it is possible to minimize the negative factors influencing the activities of construction industry companies through strategic management and support of this industry by the state.


2017 ◽  
Vol 23 (1) ◽  
pp. 150-162 ◽  
Author(s):  
Jan-Simon SCHMIDT ◽  
Rainard OSEBOLD

The construction industry, as one of almost every economy’s major generators of environmental impact, can contribute in large measure to achieving the goals of sustainability. However, most publications in this field deal with sustainability with reference to selecting construction materials and improvements in the operating phase of buildings. When considering ecological sustainability the focus has to be extended from the finished building to the building pro­cess. Therefore the actors of the construction sector who are responsible for the production process have to be studied: the construction companies. The goal of this paper is to study the state of ecologically sustainable corporate business management in construction. The state of application of elements of environmental management systems (EMS) is used as an indicator of the current situation in German construction companies. EMS can help continuously to environmen­tally improve the operating processes of the firms. A broad survey about the extent of EMS has been conducted consid­ering the barriers and drivers. In general, a relatively low interest in EMS and a lack of knowledge is noticeable within the sector. As a result, strategic recommendations are made on how to promote environmental management to foster sustainable thinking in the German construction industry.


Author(s):  
Rijk Block ◽  
Barbara Kuit ◽  
Torsten Schröder ◽  
Patrick Teuffel

<p>The structural engineering community has a strong responsibility to contribute to a more efficient use of natural resources. Nowadays the construction industry is by far the most resource intense industry sector, approximately 40-50% of all primary raw materials are used, which raises the question about the architects and engineer’s accountability. In this context and as a result of the Paris Climate agreement the Dutch government defined the program “Nederland Circulair in 2050”, which states the ambition to use 50% less primary materials in 2030 and to have a full circular economy in 2050.</p><p>One possible approach to achieve these ambitious goals is the application of renewable, bio-based materials in the built environment and to replace traditional, typically cement-based, materials. Already in the past natural building materials, such as timber and bamboo have been used widely, but in recent years new materials came up and provide new opportunities to be used in the construction industry. The authors explored various alternatives, such as hemp and flax fibres, mycelium and lignin-based fibres for composite materials, which will be described with various experimental and realised case studies.</p>


2021 ◽  
Vol 1 (1) ◽  
pp. 88-111
Author(s):  
Andrea Di Maria ◽  
◽  
Annie Levasseur ◽  
Karel Van Acker ◽  
◽  
...  

<abstract> <p>The interest in circular economy for the construction sector is constantly increasing, and Global Warming Potential (GWP) is often used to assess the carbon footprint of buildings and building materials. However, GWP presents some methodological challenges when assessing the environmental impacts of construction materials. Due to the long life of construction materials, GWP calculation should take into consideration also time-related aspects. However, in the current GWP, any temporal information is lost, making traditional static GWP better suited for retrospective assessment rather than forecasting purposes. Building on this need, this study uses a time-dependent GWP to assess the carbon footprint of two newly developed construction materials, produced through the recycling of industrial residues (stainless steel slag and industrial goethite). The results for both materials are further compared with the results of traditional ordinary Portland cement (OPC) based concrete, presenting similar characteristics. The results of the dynamic GWP (D_GWP) are also compared to the results of traditional static GWP (S_GWP), to see how the methodological development of D_GWP may influence the final environmental evaluation for construction materials. The results show the criticality of the recycling processes, especially in the case of goethite valorization. The analysis shows also that, although the D_GWP did not result in a shift in the ranking between the three materials compared with S_GWP, it provides a clearer picture of emission flows and their effect on climate change over time.</p> </abstract>


2012 ◽  
Vol 443-444 ◽  
pp. 110-114
Author(s):  
Yuan Luo

In the current transition conditions, living in rural areas how to form a new model to address the issue of live and living is very necessary. Mountainous rural areas and more for less, construction methods and how to inject carbon idea behind such issues as the actual situation in rural areas of the construction line tools and real estate construction materials, forming a certain significance of the ideas and methods.


Author(s):  
Aysem Berrin Cakmakli

There is a growing universal awareness of protecting the living and non-living environment and making enlightened decisions to achieve a sustainable development without destruction of the natural resources. In this point of view, selecting building materials according to their energy and health performances gains importance in sustainable design. 3Rs (reducing, reusing, recycling), and supplying a healthy, non-hazardous indoor air for building occupants are two important parameters of environmental life-cycle assessment for materials. Information on exposure to gases and vapors from synthetic materials made from petrochemicals, to heavy metals and pesticides, and to some combustion pollutants that cause acid rain should be determined by analyzing environmental product declarations or material specifications. After studying on building materials individually, they are analyzed in the form of tables for four different stages; manufacturing, application, usage, demolition phase. Consequently, this chapter can guide the designer and engineer to think on the elements of design and construction activity.


1999 ◽  
Vol 2 (3) ◽  
pp. 509-522
Author(s):  
Charles C. Okeahalam

The Reconstruction and Development Programme (RDP) is an attempt by the South African government to redress the imbalances of apartheid. It has many facets. One of these involves the provision and distribution of infrastructure to citizens who hitherto have been neglected. This calls for significant construction effort particularly for housing, water, roads and other social construction. This will require efficient production, and allocation of resources to ensure that there is adequate supply of materials to meet the likely increase in demand. This paper examines the expected demand for construction materials, assesses the supply capacity of South African suppliers of construction materials, and develops an econometric model which can be used to evaluate the impact that growth of the internal construction activity will have on construction industry suppliers.


2018 ◽  
Vol 170 ◽  
pp. 03032 ◽  
Author(s):  
A. Lanko ◽  
N. Vatin ◽  
A. Kaklauskas

Nowadays, almost none of the fields of human activity can do without supply chain management. In addition, implementation of one in construction companies contributes to major economic benefits. The article considers the application feasibility of blockchain in logistics of construction materials through the usage of RFID technology. An example of introduction to the process of manufacturing and delivery of ready-mixed concrete is given. The main advantages, shortcomings, perspectives, as well as difficulties arising in the implementation of blockchain technology in the construction industry are described. Special attention is paid to the applicability of these technologies.


The key players in the construction industry around the globe are very enthusiastic in producing better construction materials that are cost-effective, durable, excellent thermal insulation, lightweight and long lasting without jeopardizing the environment. One of the best ways in producing such building materials are by incorporating industrial waste materials such as Empty Fruit Bunch (EFB) fiber in foamed concrete (FC). In recent years, the spotlight has been given towards the use of natural fiber reinforced concrete-based materials especially in Malaysia in a quest of economic and environmental upkeep particularly in the construction sector itself. Hence, this study intended to recognize the influence of Empty Fruit Bunch (EFB) fiber of four different contents (0.15%, 0.30%, 0.45% and 0.60 %) by mix volume on thermal properties of FC. There were three densities of 800kg/m3 , 1100kg/m3 and 1400kg/m3 we cast and tested. The mix design of FC (sand: cement: water) is fixed at the ratio of 1:1.5:0.45. The investigation focuses on three parameters which were thermal conductivity, thermal diffusivity and specific heat capacity. Results showed that the addition of EFB in FC plays an important role to improve the thermal performance holistically. The results demonstrated a great potential possesses by the EFB fiber to be utilized in cement-based materials such as the FC mix which is beneficial in reducing the thermal property or the transfer of heat in a produced concrete.


Sign in / Sign up

Export Citation Format

Share Document