scholarly journals A Straightforward Procedure for Deriving the Biaxial Interaction Diagrams of RC Sections in Fire

2021 ◽  
Vol 1203 (3) ◽  
pp. 032057
Author(s):  
Duc Toan Pham ◽  
Hong Hai Nguyen ◽  
Sabine Boulvard

Abstract Based on the lower bound static approach of the yield design (or limit analysis) theory, this contribution presents a straightforward computational procedure for establishing the biaxial interaction diagrams of RC sections in fire conditions, taking into account the experimentally-based relationships linking the degradation of material strength properties to the temperature increase. In the present approach, material characteristics are introduced in two steps: (i) a preliminary heat transfer analysis for evaluating the temperature distribution on the RC section and (ii) the introduction of reduced factors as functions of temperature into both the concrete and steel strength properties. For illustrative purpose, calculations will be conducted on a typical RC section subjected to different fire exposures. Finally, the theoretical predictions will be compared to those obtained from numerical simulations using a finite element software.

2012 ◽  
Vol 532-533 ◽  
pp. 417-421
Author(s):  
Chang Li Song ◽  
Jing Ji

In order to improve the pipe dissipating area, a kind of new pipe with grid plate is proposed in this paper. Based on the basic principle of heat transfer and energy conservation law, by finite element software ANSYS the simulation analysis of the steady-state heat transfer of the new pipeline is carried out, process of ANSYS modeling, loading and solving is introduced in detail, the distribution of temperature and stress for pipe with a grid plate is given, these can provide the foundation for the selection of the optimal diameter of the grid plate and transient heat transfer analysis of pipe.


2021 ◽  
Vol 25 (1) ◽  
pp. 62-71
Author(s):  
Agnieszka Chudzik

Abstract A numerical analysis of the effect of temperature on the dynamics of the sandwich beam model with a viscoelastic core is presented. The beam under analysis was described with a standard rheological model. This solution allows one to study the effect of temperature on material strength properties. Calculations were performed with the Finite Element Method in the ANSYS software. The analysis of the results of the numerical calculations showed a significant influence of temperature on the strength properties of the model under test. The analysis confirmed damping properties of viscoelastic materials.


Author(s):  
O. R. Schmoch ◽  
B. Deblon

The peripheral speeds of the rotors of large heavy-duty gas turbines have reached levels which place extremely high demands on material strength properties. The particular requirements of gas turbine rotors, as a result of the cycle, operating conditions and the ensuing overall concepts, have led different gas turbine manufacturers to produce special structural designs to resolve these problems. In this connection, a report is given here on a gas turbine rotor consisting of separate discs which are held together by a center bolt and mutually centered by radial serrations in a manner permitting expansion and contraction in response to temperature changges. In particular, the experience gained in the manufacture, operation and servicing are discussed.


2005 ◽  
Author(s):  
Muhammad Khalid ◽  
Chenn Zhou ◽  
Ashish Bassi ◽  
San Ming Wang ◽  
Howard Gerber ◽  
...  

A 2.45 GHz radio frequency (RF) exposure system was designed and used to study the RF effects on the genome-wide gene expression in cultured human cells. In this system, a T-25 culture flask, which contains 10 × 106 cells in a 10ml medium, is placed in a WR 340 waveguide. The waveguide serves as an environmental chamber. The source is a pulsed magnetron for obtaining a high electric field with the specific absorption rate (SAR) at approximately 10 W/kg. In order to ensure the non-thermal effect, the system was designed to maintain a temperature of 37°C. In this research, the heat transfer analysis of the system was conducted using the computational fluid dynamic (CFD) software FLUENT® coupled with the finite element software, High Frequency Structural Simulation (HFSS) by Ansoft. The electric field was first analyzed by using HFSS to calculate the SAR distribution as a heat source input for CFD calculations. The fluid flow and temperature distributions within the flask were then analyzed using FLUENT®. The results were validated experimentally by measuring the temperatures with fluoroptic thermometer probes as well as by examining the level of heat shock gene expression. These results provide useful information for a better understanding and controlling of the operating conditions of the system.


Author(s):  
David A. Miller ◽  
John F. Mandell ◽  
Daniel D. Samborsky

Montana State University (MSU) has a compilation of material systems, environmental chambers, and mechanical testing equipment to determine composite materials performance and failure characteristics. Mechanical characterization of composite systems will provide direct quantification of the materials under consideration for Marine Hydro Kinetic (MHK) designs that were initially developed for the wind turbine industry. The work presented herein represents the testing protocol development and initial results to support investigations on the effect of sea water absorption on material strength. A testing protocol for environmental effects has been developed for the resin infused in-house fabricated laminates. Unidirectional ([0] and [90]) test samples of 2-mm and 6-mm thickness were be submerged for 1000 hours in synthetic sea water at 40°C with the weight recorded at time intervals over the entire period. After 1000 hours of conditioning, coupons were placed in the synthetic sea water at 20°C until testing. Static compressive and tensile strength properties at temperatures of 5°C, 20°C and 40°C were collected. These initial results show trends of reduced tensile and compressive strength with increasing moisture and temperature in the 0° (longitudinal) direction. In the 90° (transverse) direction, compression strength decreases but tensile strength is little affected as temperature and moisture increase. Elastic modulus (E) is little affected in the longitudinal direction but decreases in the transverse direction.


Author(s):  
William R. Wessels

This paper presents a design-for-reliability approach for mechanical design. Reliability analysis in part design, indeed the very definition of reliability, has been focused towards the electronic and digital disciplines since the emergence of reliability engineering in the late 1940’s. That focus dictates that parts fail in time; that all parts have a constant failure rate, and that part failure is modeled by the exponential mass density function. This paper presents current research that proposes that reliability in mechanical design is not characterized by ‘best practices’ reliability analyses. One premise investigated is that time does not cause failure in mechanical design; only failure mechanisms do. Mechanical parts experience wear-out and fatigue, unlike electronic and digital parts. Mechanical design analysis for part design investigates material strength properties required to survive failure mechanisms induced by part operation and by part exposure to external failure mechanisms. Such failure mechanisms include physical loads, thermal loads, and reactivity/corrosion. Each failure mechanism acting on a mechanical part induces one or more part failure modes, and each part failure mode has one or more failure effects on the part and the upper design configurations in which the part is integrated. The second premise investigated is that mechanical part failure is modeled by the Weibull mass density function in terms of stress, not time. A reliability math model for tensile strength in composite materials is presented to illustrate the two premises.


2014 ◽  
Vol 578-579 ◽  
pp. 839-845
Author(s):  
Meng Zhou Lv ◽  
Han Chen Guo ◽  
Feng Tian

Effective flange width’s value of U-section steel-encased concrete composite beam was studied by ANSYS. Based on the static equivalent principle, the general rules of effective flange width changed with load are summarized by finite element analysis and considering the effect of 4 factors: width-span ratio, loading form, concrete thickness, and material strength including concrete strength and steel strength. The analysis results show that wide-span ratio and load form has a greater impact on the effective flange width; concrete thickness and material strength’s effects can be negligible.


2015 ◽  
Vol 5 (3) ◽  
pp. 191-199
Author(s):  
Филичкина ◽  
Maria FilichkinaM ◽  
Копарев ◽  
Vladimir Koparev

The article presents the results of studies on the production of wood-cement composite with various fillers, such as sawdust, gravel, bark and shavings, the binder acts as a cement. The developed technology allows producing the construction product with a good range of strength properties depending on the product. In the work carried out tests of samples on the strength of a compression method on the equipment VSFEU. The result of testing the strength of steel obtained dependence of material strength on the fraction of components in the mixture components, which then led to the conclusion that the strength limits varied from 0.38 MPa to 2.72 MPa.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Qizhou Hu ◽  
Zhuping Zhou ◽  
Xu Sun

This paper examines a new evaluation of urban road traffic safety based on a matter element analysis, avoiding the difficulties found in other traffic safety evaluations. The issue of urban road traffic safety has been investigated through the matter element analysis theory. The chief aim of the present work is to investigate the features of urban road traffic safety. Emphasis was placed on the construction of a criterion function by which traffic safety achieved a hierarchical system of objectives to be evaluated. The matter element analysis theory was used to create the comprehensive appraisal model of urban road traffic safety. The technique was used to employ a newly developed and versatile matter element analysis algorithm. The matter element matrix solves the uncertainty and incompatibility of the evaluated factors used to assess urban road traffic safety. The application results showed the superiority of the evaluation model and a didactic example was included to illustrate the computational procedure.


2014 ◽  
Vol 578-579 ◽  
pp. 252-255
Author(s):  
Ya Feng Xu ◽  
Qian Chen ◽  
Pi Yuan Xu ◽  
Riyad S. Aboutaha

Composite concrete filled steel tubular (CFST) column is a new type of column having high ductility and high load-bearing capacity. In this paper, the finite element analysis software ABAQUS is used to study the seismic performance of 3D joint of composite CFST column and steel beam. The hysteretic curve and skeleton curve are obtained by changing the strength grade of the steel beam; calculate the energy dissipation ratio of the joint. The results show that the higher the beam’s steel strength the higher ultimate capacity of the joint in the constant axial load. But the full degree of hysteresis curve, energy dissipation and displacement ductility of the space joint decrease.


Sign in / Sign up

Export Citation Format

Share Document