scholarly journals Low pass anti-alias filter for ADC with differential input on base Op-Amp with differential output with a minimum number of capacitors

Author(s):  
D Yu Denisenko ◽  
N N Prokopenko ◽  
N V Butyrlagin
2018 ◽  
Vol 27 (06) ◽  
pp. 1850089 ◽  
Author(s):  
Zehra Gulru Cam Taskiran ◽  
Herman Sedef ◽  
Fuat Anday

In this paper, a new active-C filter realizing the general [Formula: see text]th-order low-pass voltage transfer functions using [Formula: see text] voltage differencing gain amplifiers (VDGAs) is presented. In this realization minimum number of equal-valued grounded capacitors and [Formula: see text] active elements are used. Due to the adjustability of the transconductance of the VDGA with current, different gains can be realized using the same building block and a simple filter structure can be created. The filter which is composed of VDGA building blocks is suitable for integration and advantageous in terms of eliminating parasitic effects because all capacitors are grounded and the filter structure has no resistors. All simulations are performed on SPICE and the accuracy of this method is validated experimentally with commercially available products upon on-board circuit.


2011 ◽  
Vol 20 (03) ◽  
pp. 549-555 ◽  
Author(s):  
A. K. SINGH ◽  
R. SENANI ◽  
D. R. BHASKAR ◽  
R. K. SHARMA

A number of configurations for realizing voltage-mode (VM) biquads using op-amps and OTAs have been presented in the literature, however, none of these provide the following desirable properties simultaneously: (i) realizability of all the five standard filters (namely; low pass, high pass, band pass, band stop and all pass), (ii) tunability of all the three filter parameters (namely; ω0, bandwidth or Q0 and gain) and (iii) not requiring any realization condition in any of the five filter responses. This paper presents a new configuration which does possess all the above mentioned desirable properties simultaneously while using only two internally-compensated type op-amps and a reasonable number of OTAs. The workability of the new configuration has been demonstrated by SPICE simulations based upon CMOS Op-amp and CMOS OTAs.


Author(s):  
Noor Thamer Almalah ◽  
Faris Hasan Aldabbagh

<p>In this paper, a designed circuit used for low-frequency filters is implemented and realized the filter is based on frequency-dependent negative resistance (FDNR) as an inductor simulator to substitute the traditional inductance, which is heavy and high cost due to the coil material manufacturing and size area. The simulator is based on an active operation amplifier or operation transconductance amplifier (OTA) that is easy to build in an integrated circuit with a minimum number of components. The third and higher-order Butterworth filter is simulated at low frequency for low pass filter to use in medical instruments and low-frequency applications. The designed circuit is compared with the traditional proportional integral controller enhanced (PIE) and T section ordinary filter. The results with magnitude and phase response were compared and an acceptable result is obtained. The filter can be used for general applications such as medical and other low-frequency filters needed.</p>


2012 ◽  
Vol 229-231 ◽  
pp. 1531-1534
Author(s):  
Hai Dan Zhang ◽  
Hu Bao ◽  
Den Gan Chen ◽  
Jing Yu

The design of low-pass and bandpass filters is often based on the leapfrog method which, in these cases, yields integrator-based structures. Using the leapfrog signal flow graph (SFG) for the simulation of high-pass filters leads to a differentiator-based structure which could be implemented by Gm-C or CCII conveniently. However, when we use Op amp RC integrators for good linearity, we have to use integrators, and not differentiators, for reasons related to the excessive noise behavior of the latter. This paper presents a new leapfrog SFG implementation by fully differential Op amp integrators, which combines good high-frequency properties with good noise properties. The direct SFG simulation method and single-ended output Op amp can also based on integrators, but all of them will lead to a relatively high circuit complexity and a high noise level. A design example is included, with comparisons of gain responses and noise densities.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Ashish Ranjan ◽  
Sajal K. Paul

This paper proposes a multi-input single-output (MISO) second-order active-C voltage mode (VM) universal filter using two second-generation current-controlled current conveyors (CCCIIs) and two equal-valued capacitors. The proposed circuit realizes low pass, band pass, high pass, all pass, and notch responses from the same topology. The filter uses-minimum number of passive components and no resistor which is suitable for IC Design. The filter enjoys low-sensitivity performance and exhibits electronic and orthogonal tunability of pole frequency () and quality factor () via bias current of CCCIIs. PSPICE simulation results confirm the theory.


2015 ◽  
Vol 24 (06) ◽  
pp. 1550085 ◽  
Author(s):  
Firat Yucel ◽  
Erkan Yuce

A new voltage-mode (VM) multifunctional filter using only two voltage followers (VFs), two resistors and two capacitors is proposed. The proposed filter with two inputs and two outputs can provide low-pass (LP) and high-pass (HP) responses. It does not need any critical passive component matching constraints. Additionally, it has low output impedances, low power dissipation and adequately low THD values. However, it does not have high input impedances; accordingly, it requires an extra VF to obtain high input impedance. A number of time domain and frequency domain simulations and experimental tests are performed to verify the claimed theory.


2008 ◽  
Vol 17 (01) ◽  
pp. 33-54 ◽  
Author(s):  
AHMED M. SOLIMAN

The history of Tow–Thomas second-order filter is reviewed. Two alternative generation methods of the Tow–Thomas filter are discussed. The first is a generation method from the second-order passive RLC filter and the second is from the multiple feedbacks inverting low-pass filter using a single op amp. Several forms of the circuit are briefly reviewed. Passive and active compensation methods to improve the circuit performance for high-Q designs are summarized. Spice simulation results are included.


2015 ◽  
Vol 22 (2) ◽  
pp. 251-262 ◽  
Author(s):  
Chaolong Zhang ◽  
Yigang He ◽  
Lei Zuo ◽  
Jinping Wang ◽  
Wei He

Abstract Correct incipient identification of an analog circuit fault is conducive to the health of the analog circuit, yet very difficult. In this paper, a novel approach to analog circuit incipient fault identification is presented. Time responses are acquired by sampling outputs of the circuits under test, and then the responses are decomposed by the wavelet transform in order to generate energy features. Afterwards, lower-dimensional features are produced through the kernel entropy component analysis as samples for training and testing a one-against-one least squares support vector machine. Simulations of the incipient fault diagnosis for a Sallen-Key band-pass filter and a two-stage four-op-amp bi-quad low-pass filter demonstrate the diagnosing procedure of the proposed approach, and also reveal that the proposed approach has higher diagnosis accuracy than the referenced methods.


Author(s):  
Danupat Duangmalai ◽  
Peerawut Suwanjan

In this research contribution, the electronically tunable first-order universal filter employing a single voltage differencing differential input buffered amplifier (VD-DIBA) (constructed from two commercially available integrated circuit (IC): the operational transconductance amplifier, IC number LT1228, and the differential voltage input buffer, IC number AD830), one capacitor and two resistors. The features of the designed first order universal filter are as follows. Three voltage-mode first-order functions, low-pass (LP), all-pass (AP) and high-pass (HP) responses are given. The natural frequency (𝜔0) of the presented configuration can be electronically adjusted by setting the DC bias current. Moreover, the voltage gain of the LP and HP filters can be controllable. The phase responses of an AP configuration can be varied from 00 to −1800 and 1800 to 00. The power supply voltages were set at ±5 𝑉. Verification of the theoretically described performances of the introduced electronically tunable universal filter was proved by the PSpice simulation and experiment.


Foristek ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Wahyu Rizal Nugraha ◽  
Tan Suryani Sollu ◽  
Ardi Amir

The objective of this research is to design and create a practicum application of op-amp (operational amplifier) based on IC 741 and IC 301. By adding the components R (Resistor) C (Capacitor) IC op-amp can be applied into several series. In this practical tool there are several modules of the experiment such as multiplier, the enumerator, deduction, comparison, integrator, differentiators. This tool also equipped with a series active filter such as low pass filter, high pass filter, band pass filter and band stop filter. This practical tools requires some tool support in the form of power supply as an input voltage, a function generator to generate signals with different shapes as desired in accordance with the requirements when the practical activities and the oscilloscope as a tool of reader input waveform and the output of the circuit that exist in practical tools. Practical activities and oscilloscopes as input and output wave reader from the circuits in the practicum


Sign in / Sign up

Export Citation Format

Share Document