scholarly journals Dynamics of water-energy-food nexus interactions with climate change and policy options

Author(s):  
Lina Wu ◽  
Amin Elshorbagy ◽  
Md. Shahabul Alam

Abstract Understanding the dynamics of water-energy-food (WEF) nexus interactions with climate change and human intervention helps inform policymaking. This study demonstrates the WEF nexus behavior under ensembles of climate change, transboundary inflows, and policy options, and evaluates the overall nexus performance using a previously developed system dynamics-based WEF nexus model—WEF-Sask. The climate scenarios include a baseline (1986-2014) and near-future climate projections (2021-2050). The approach is demonstrated through the case study of Saskatchewan, Canada. Results show that rising temperature with increased rainfall likely maintains reliable food and feed production. The climate scenarios characterized by a combination of moderate temperature increase and slightly less rainfall or higher temperature increase with slightly higher rainfall are easier to adapt to by irrigation expansion. However, such expansion uses a large amount of water resulting in reduced hydropower production. In contrast, higher temperature, combined with less rainfall, such as SSP370 (2.4 ℃, -6 mm), is difficult to adapt to by irrigation expansion. Renewable energy expansion, the most effective climate change mitigation option in Saskatchewan, leads to the best nexus performance during 2021-2050, reducing total water demand, groundwater demand, greenhouse gas (GHG) emissions, and potentially increasing water available for food production. In this study, we recommend and use food and power production targets and provide an approach to assessing the impacts of hydroclimate and policy options on the WEF nexus, along with suggestions for adapting the agriculture and energy sectors to climate change.

2020 ◽  
Vol 12 (12) ◽  
pp. 5060 ◽  
Author(s):  
Mariusz Adynkiewicz-Piragas ◽  
Bartłomiej Miszuk

Water resources are one of the most important issues affected by climate change. Climate scenarios show that in the upcoming decades, further climate change can occur. It concerns especially air temperature and sunshine duration, whose prognosis indicates a significant rising trend till the end of the century. The goal of the paper was the evaluation of water resources and hydropower production in the future, depending on climate scenarios with a consideration of risk analysis. The analysis was carried out on the basis of observation data for the Lusatian Neisse river basin (Poland) for 1971–2015 and climate projections till 2100 for the RCP2.6 and RCP8.5 (representative concentration pathways) scenarios. The results of the research showed that, especially in terms of RCP8.5, very high risk of decrease in water resources and hydropower production is expected in the future. Therefore, recommendations for mitigation of the possible effects are presented.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 286
Author(s):  
Bangshuai Han ◽  
Shawn G. Benner ◽  
Alejandro N. Flores

:In intensively managed watersheds, water scarcity is a product of interactions between complex biophysical processes and human activities. Understanding how intensively managed watersheds respond to climate change requires modeling these coupled processes. One challenge in assessing the response of these watersheds to climate change lies in adequately capturing the trends and variability of future climates. Here we combine a stochastic weather generator together with future projections of climate change to efficiently create a large ensemble of daily weather for three climate scenarios, reflecting recent past and two future climate scenarios. With a previously developed model that captures rainfall-runoff processes and the redistribution of water according to declared water rights, we use these large ensembles to evaluate how future climate change may impact satisfied and unsatisfied irrigation throughout the study area, the Treasure Valley in Southwest Idaho, USA. The numerical experiments quantify the changing rate of allocated and unsatisfied irrigation amount and reveal that the projected temperature increase more significantly influences allocated and unsatisfied irrigation amounts than precipitation changes. The scenarios identify spatially distinct regions in the study area that are at greater risk of the occurrence of unsatisfied irrigation. This study demonstrates how combining stochastic weather generators and future climate projections can support efforts to assess future risks of negative water resource outcomes. It also allows identification of regions in the study area that may be less suitable for irrigated agriculture in future decades, potentially benefiting planners and managers.


2014 ◽  
Vol 11 (5) ◽  
pp. 4925-4969
Author(s):  
R. M. Records ◽  
M. Arabi ◽  
S. R. Fassnacht ◽  
W. G. Duffy ◽  
M. Ahmadi ◽  
...  

Abstract. An understanding of potential stream water quality conditions under future climate is critical for the sustainability of ecosystems and protection of human health. Changes in wetland water balance under projected climate could alter wetland extent or cause wetland loss. This study assessed the potential climate-induced changes to in-stream sediment and nutrients loads in the historically snow melt-dominated Sprague River, Oregon, Western United States. Additionally, potential water quality impacts of combined changes in wetland water balance and wetland area under future climatic conditions were evaluated. The study utilized the Soil and Water Assessment Tool (SWAT) forced with statistical downscaling of general circulation model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5) using the Multivariate Adaptive Constructed Analogs (MACA) method. Our findings suggest that in the Sprague River (1) mid-21st century nutrient and sediment loads could increase significantly during the high flow season under warmer-wetter climate projections, or could change only nominally in a warmer and somewhat drier future; (2) although water quality conditions under some future climate scenarios and no wetland loss may be similar to the past, the combined impact of climate change and wetland losses on nutrient loads could be large; (3) increases in stream total phosphorus (TP) concentration with wetland loss under future climate scenarios would be greatest at high-magnitude, low-probability flows; and (4) loss of riparian wetlands in both headwaters and lowlands could increase outlet TP loads to a similar degree, but this could be due to distinctly different mechanisms in different parts of the watershed.


2020 ◽  
Vol 87 ◽  
Author(s):  
Heitor Lisbôa ◽  
Anderson Dionei Grutzmacher ◽  
Marcos Silveira Wrege ◽  
Flávio Roberto Mello Garcia ◽  
Dori Edson Nava

ABSTRACT: Anastrepha grandis is one of the main pests related to Cucurbitaceae in South and Central America. This study discusses the impact of temperature increase on the number of generations of A. grandis, whose distribution could be aggravated due to temperature increase. Climatic variations were analyzed for reference scenarios obtained from 1961‒1990 and of A2 and B1 climatic change scenarios of the Intergovernmental Panel on Climate Change, in which a less pessimistic scenario (B1) and a more pessimistic scenario (A2) were found. In relation to the reference scenarios, in colder seasons, the southern and southeastern regions are inadequate for the development of A. grandis, presenting one generation at most. In other regions of Brazil, where temperatures are higher throughout the year, the number of generations is at least two, and there is no variation from one climatic season to another. When analyzing the temperature increase, in a more pessimistic scenario (A2), there is a considerable variation in the number of generations, if we take into account three future climate scenarios in which A. grandis practically doubles the number of generations. In relation to a less pessimistic scenario (B1), there is a smaller variation in the number of generations, mainly in the southern region of the country. This variation is more accentuated in southeastern Brazil due to the temperature increase, in which the pest’s number of generations doubles even in colder seasons.


2021 ◽  
Author(s):  
Lola Corre ◽  
Samuel Somot ◽  
Jean-Michel Soubeyroux ◽  
Sébastien Bernus ◽  
Agathe Drouin ◽  
...  

<p>The French National Climate Service “Drias, futures of climate” was launched in 2012, as a response of the French scientific community to society’s need for climatic information. It is mainly composed of a website that provides easy access to the best available climate data to characterize climate change over France. Latest advances developed in 2020 include the availability of a new set of regional climate scenarios corrected by a quantile-mapping based method with correction depending on the weather regime. As for the previous set, the climate projections are based on the EURO-CORDEX ensemble, whose contents have been greatly enriched over the past years. Singular effort was done to build a robust and synthetic set that well represents the uncertainties of climate change over France. The different criteria defined to select the simulations will be presented, and the range of the projected climate change will be examined, with respect to larger ensembles.</p><p> </p>


2014 ◽  
Vol 18 (11) ◽  
pp. 4509-4527 ◽  
Author(s):  
R. M. Records ◽  
M. Arabi ◽  
S. R. Fassnacht ◽  
W. G. Duffy ◽  
M. Ahmadi ◽  
...  

Abstract. An understanding of potential stream water quality conditions under future climate is critical for the sustainability of ecosystems and the protection of human health. Changes in wetland water balance under projected climate could alter wetland extent or cause wetland loss (e.g., via increased evapotranspiration and lower growing season flows leading to reduced riparian wetland inundation) or altered land use patterns. This study assessed the potential climate-induced changes to in-stream sediment and nutrient loads in the snowmelt-dominated Sprague River, Oregon, western US. Additionally, potential water quality impacts of combined changes in wetland water balance and wetland area under future climatic conditions were evaluated. The study utilized the Soil and Water Assessment Tool (SWAT) forced with statistical downscaling of general circulation model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5) using the Multivariate Adaptive Constructed Analogs (MACA) method. Our findings suggest that, in the Sprague River, (1) mid-21st century nutrient and sediment loads could increase significantly during the high-flow season under warmer, wetter climate projections or could change only nominally in a warmer and somewhat drier future; (2) although water quality conditions under some future climate scenarios and no wetland loss may be similar to the past, the combined impact of climate change and wetland losses on nutrient loads could be large; (3) increases in stream total phosphorus (TP) concentration with wetland loss under future climate scenarios would be greatest at high-magnitude, low-probability flows; and (4) loss of riparian wetlands in both headwaters and lowlands could increase outlet TP loads to a similar degree, but this could be due to distinctly different mechanisms in different parts of the watershed.


2018 ◽  
Vol 50 ◽  
pp. 01005
Author(s):  
Ana Vukovic ◽  
Mirjam Vujadinovic ◽  
Mirjana Ruml ◽  
Zorica Rankovic-Vasic ◽  
Zoran Przic ◽  
...  

Growing interest in Serbia in adaptation of viticulture to climate change emerged from a recorded positive impact of summer increased draught on domestic wine quality. Another motivation is that viticulture has been recognized as one of the fastest developing agricultural sectors in Serbia and, to contain its growing potential, it is crucial to provide basis for its future sustainable development. Prioritization and implementation of adaptation measures in practice require reliable assessment of climate projections. For climate change impact assessment is used high resolution multi-model ensemble of nine regional climate models simulations, bias corrected, with two most probable future scenarios of GHG emissions RCP4.5 and RCP8.5, for the period 2016-2100. Analysis has been done for the near future, mid-century and end of the century periods. The periods are defined according to the IPCC 5th Assessment Report, which enables comparison of climate change impacts with a wider region, and preferably motivate future international collaboration and knowledge exchange.


2013 ◽  
Vol 04 (04) ◽  
pp. 1340013 ◽  
Author(s):  
B. C. C. VAN DER ZWAAN ◽  
H. RÖSLER ◽  
T. KOBER ◽  
T. ABOUMAHBOUB ◽  
K. V. CALVIN ◽  
...  

We investigate the long-term global energy technology diffusion patterns required to reach a stringent climate change target with a maximum average atmospheric temperature increase of 2°C. If the anthropogenic temperature increase is to be limited to 2°C, total CO 2 emissions have to be reduced massively, so as to reach substantial negative values during the second half of the century. Particularly power sector CO 2 emissions should become negative from around 2050 onwards according to most models used for this analysis in order to compensate for GHG emissions in other sectors where abatement is more costly. The annual additional capacity deployment intensity (expressed in GW/yr) for solar and wind energy until 2030 needs to be around that recently observed for coal-based power plants, and will have to be several times higher in the period 2030–2050. Relatively high agreement exists across models in terms of the aggregated low-carbon energy system cost requirements on the supply side until 2050, which amount to about 50 trillion US$.


Author(s):  
Elias Giannakis ◽  
George Zittis

AbstractAnthropogenic greenhouse gas (GHG) emissions coming mainly from fossil fuel combustion for energy use are causing air temperature increases resulting in climate change. This study employs an environmentally extended input–output model to conduct an economy-wide assessment of GHG emissions in the European Union (EU). Model results indicate that the assumed growth of economic activity by 2030 will lead to a large increase in GHG emissions by 89%, assuming no technological change and no additional policy mitigation efforts. The electricity sector and agriculture create the highest direct and indirect GHG emissions per unit of economic output across the 27 EU member states (EU-27); for every 1-million-euro-increase in the final demand for the products and services of the electricity sector and agriculture, 2198 and 1410 additional tons of GHG emit, respectively. Regional climate projections under a low-decarbonisation pathway (RCP8.5), in accordance with our economic analysis, indicate a further increase of regional warming, combined with pronounced changes in the hydrological cycle. Contrariwise, following a strong mitigation pathway (RCP2.6) will result in warming levels lower than 1.5 °C with respect to the 1986–2005 reference period. Our findings reveal the importance of both direct and indirect contribution of economic sectors in the generation of GHG emissions, taking into consideration the size of the sectors and the assumed growth rates. The design and implementation of sectoral emission reduction policies from the perspective of the whole production supply chain can effectively contribute to GHG emission reduction commitments.


Author(s):  
I. R. Ramos Iensen ◽  
G. Bauer Schultz ◽  
I. Dos Santos

Abstract. Climate change can cause significant modifications in hydrosedimentological processes. Climate projections indicate the occurrence of extreme events, in terms of precipitation, droughts, floods and temperature. By increasing temperatures and altering precipitation regimes, climate change is expected to affect sediment dynamics. Predictions of the effects of climate change on streamflow and sediment yield vary widely, depending on the geographical location and climate scenarios used. Mathematical modelling can be used to simulate the hydrosedimentological processes in watersheds and enable the simulation of climate change effects on sediment yield. This paper aims to simulate the impacts of climate change hydrosedimentological dynamics in the Apucaraninha River watershed (504 km²), southern Brazil, considering the climate change scenarios A2 (pessimistic about the emissions of greenhouse gases) and B2 (optimistic about the emissions of greenhouse gases), developed by the IPCC. The Soil and Water Assessment Tool (SWAT) was used to evaluate the impacts of climate projections on the sediment yield in the Apucaraninha River watershed. The model was calibrated and validated using daily streamflow and sediment data from 1987 to 2012. The model presented satisfactory fit to the observed data allowing the reproduction of the current hydrological conditions of the watershed. Based on the satisfactory results in calibration and validation, the climate scenarios A2 and B2 were inserted to simulate streamflow and sediment conditions for the period 2071–2100. The results for both scenarios indicate that simulations of both climate scenarios resulted in changes in hydrosedimentological dynamics in the Apucaraninha River watershed, mainly in terms of decrease in average sediment yield due to the reduction in precipitation amount and increase in evapotranspiration. Our results also indicate that every 1% change in precipitation has resulted in 2.8% change in soil erosion and 1.6% change in runoff under scenario A2, and 2.3% change in erosion and 1.1% in runoff under scenarios B2, thus suggesting that climate change tends to affect sediment yield more than streamflow, although seasonally both could be impacted in similar ways.


Sign in / Sign up

Export Citation Format

Share Document