The Emergence of Environment as a Security Imperative

Author(s):  
Felix Dodds

The emergence of environment as a security imperative is something that could have been avoided. Early indications showed that if governments did not pay attention to critical environmental issues, these would move up the security agenda. As far back as the Club of Rome 1972 report, Limits to Growth, variables highlighted for policy makers included world population, industrialization, pollution, food production, and resource depletion, all of which impact how we live on this planet. The term environmental security didn’t come into general use until the 2000s. It had its first substantive framing in 1977, with the Lester Brown Worldwatch Paper 14, “Redefining Security.” Brown argued that the traditional view of national security was based on the “assumption that the principal threat to security comes from other nations.” He went on to argue that future security “may now arise less from the relationship of nation to nation and more from the relationship between man to nature.” Of the major documents to come out of the Earth Summit in 1992, the Rio Declaration on Environment and Development is probably the first time governments have tried to frame environmental security. Principle 2 says: “States have, in accordance with the Charter of the United Nations and the principles of international law, the sovereign right to exploit their own resources pursuant to their own environmental and developmental policies, and the responsibility to ensure that activities within their jurisdiction or control do not cause damage to the environment of other States or of areas beyond the limits of national.” In 1994, the UN Development Program defined Human Security into distinct categories, including: • Economic security (assured and adequate basic incomes). • Food security (physical and affordable access to food). • Health security. • Environmental security (access to safe water, clean air and non-degraded land). By the time of the World Summit on Sustainable Development, in 2002, water had begun to be identified as a security issue, first at the Rio+5 conference, and as a food security issue at the 1996 FAO Summit. In 2003, UN Secretary General Kofi Annan set up a High-Level Panel on “Threats, Challenges, and Change,” to help the UN prevent and remove threats to peace. It started to lay down new concepts on collective security, identifying six clusters for member states to consider. These included economic and social threats, such as poverty, infectious disease, and environmental degradation. By 2007, health was being recognized as a part of the environmental security discourse, with World Health Day celebrating “International Health Security (IHS).” In particular, it looked at emerging diseases, economic stability, international crises, humanitarian emergencies, and chemical, radioactive, and biological terror threats. Environmental and climate changes have a growing impact on health. The 2007 Fourth Assessment Report (AR4) of the UN Intergovernmental Panel on Climate Change (IPCC) identified climate security as a key challenge for the 21st century. This was followed up in 2009 by the UCL-Lancet Commission on Managing the Health Effects of Climate Change—linking health and climate change. In the run-up to Rio+20 and the launch of the Sustainable Development Goals, the issue of the climate-food-water-energy nexus, or rather, inter-linkages, between these issues was highlighted. The dialogue on environmental security has moved from a fringe discussion to being central to our political discourse—this is because of the lack of implementation of previous international agreements.

Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1350
Author(s):  
Ilan Stavi ◽  
Anastasia Paschalidou ◽  
Apostolos P. Kyriazopoulos ◽  
Rares Halbac-Cotoara-Zamfir ◽  
Si Mokrane Siad ◽  
...  

Hyperarid, arid, semiarid, and dry subhumid areas cover approximately 41% of the global land area. The human population in drylands, currently estimated at 2.7 billion, faces limited access to sufficient, affordable, and nutritious food. We discuss the interlinkages among water security, environmental security, energy security, economic security, health security, and food security governance, and how they affect food security in drylands. Reliable and adequate water supply, and the prevention of water contamination, increase the potential for ample food, fodder, and fiber production. Protecting woodlands and rangelands increases food security by buffering the slow onset effects of climate change, including biodiversity loss, desertification, salinization, and land degradation. The protection of natural lands is expected to decrease environmental contamination, and simultaneously, reduce the transfer of diseases from wildlife to humans. Biofuel production and hydroelectric power plants increase energy security but generate land-use conflicts, deforestation, and ecosystem degradation. Economic security generally positively correlates with food security. However, economic growth often degrades the environment, changes tenure rights over natural resources, and stimulates migration to urban areas, resulting in lower food and health security. Moreover, civil unrest, political instability, and armed conflicts disrupt local economies in drylands. Maintaining food security is crucial for health security; conversely, malnourished populations and unresponsive health systems decrease economic security, and adversely affect environmental, energy, and food security. Climate change is expected to deteriorate health security by spreading vector-borne diseases. Effective governance and timely interventions can substantially shorten periods of food insecurity, lower their intensities, and accelerate recovery from inevitable crises, and are therefore crucial in preventing humanitarian crises. Since global drylands population will nearly double by 2050, and since drylands are among the most susceptible areas to climate change, integrated multi-hazard approaches to food security are needed.


2020 ◽  
Vol 2 (8) ◽  
pp. 101-110
Author(s):  
N. N. ILYSHEVA ◽  
◽  
E. V. KARANINA ◽  
G. P. LEDKOV ◽  
E. V. BALDESKU ◽  
...  

The article deals with the problem of achieving sustainable development. The purpose of this study is to reveal the relationship between the components of sustainable development, taking into account the involvement of indigenous peoples in nature conservation. Climate change makes achieving sustainable development more difficult. Indigenous peoples are the first to feel the effects of climate change and play an important role in the environmental monitoring of their places of residence. The natural environment is the basis of life for indigenous peoples, and biological resources are the main source of food security. In the future, the importance of bioresources will increase, which is why economic development cannot be considered independently. It is assumed that the components of resilience are interrelated and influence each other. To identify this relationship, a model for the correlation of sustainable development components was developed. The model is based on the methods of correlation analysis and allows to determine the tightness of the relationship between economic development and its ecological footprint in the face of climate change. The correlation model was tested on the statistical materials of state reports on the environmental situation in the Khanty-Mansiysk Autonomous Okrug – Yugra. The approbation revealed a strong positive relationship between two components of sustainable development of the region: economy and ecology.


Author(s):  
Andrew Harmer ◽  
Jonathan Kennedy

This chapter explores the relationship between international development and global health. Contrary to the view that development implies ‘good change’, this chapter argues that the discourse of development masks the destructive and exploitative practices of wealthy countries at the expense of poorer ones. These practices, and the unregulated capitalist economic system that they are part of, have created massive inequalities between and within countries, and potentially catastrophic climate change. Both of these outcomes are detrimental to global health and the millennium development goals and sustainable development goals do not challenge these dynamics. While the Sustainable Development Goals acknowledge that inequality and climate change are serious threats to the future of humanity, they fail to address the economic system that created them. Notwithstanding, it is possible that the enormity and proximity of the threat posed by inequality and global warming will energise a counter movement to create what Kate Raworth terms ‘an ecologically safe and socially just space’ for the global population while there is still time.


2018 ◽  
Vol 115 (47) ◽  
pp. 11935-11940 ◽  
Author(s):  
Ethan E. Butler ◽  
Nathaniel D. Mueller ◽  
Peter Huybers

Continuation of historical trends in crop yield are critical to meeting the demands of a growing and more affluent world population. Climate change may compromise our ability to meet these demands, but estimates vary widely, highlighting the importance of understanding historical interactions between yield and climate trends. The relationship between temperature and yield is nuanced, involving differential yield outcomes to warm (9−29 °C) and hot (>29 °C) temperatures and differing sensitivity across growth phases. Here, we use a crop model that resolves temperature responses according to magnitude and growth phase to show that US maize has benefited from weather shifts since 1981. Improvements are related to lengthening of the growing season and cooling of the hottest temperatures. Furthermore, current farmer cropping schedules are more beneficial in the climate of the last decade than they would have been in earlier decades, indicating statistically significant adaptation to a changing climate of 13 kg·ha−1· decade−1. All together, the better weather experienced by US maize accounts for 28% of the yield trends since 1981. Sustaining positive trends in yield depends on whether improvements in agricultural climate continue and the degree to which farmers adapt to future climates.


Author(s):  
Gayatri Sahu ◽  
Pragyan Paramita Rout ◽  
Suchismita Mohapatra ◽  
Sai Parasar Das ◽  
Poonam Preeti Pradhan

World population is increasing day by day and at the same time agriculture is threatened due to natural resource degradation and climate change. A growing global population and changing diets are driving up the demand for food. The food security challenge will only become more difficult, as the world will need to produce about 70 percent more food by 2050 to feed an estimated 9 billion people. Production stability, agricultural productivity, income and food security is negatively affected by changing climate. Therefore, agriculture must change according to present situation for meeting the need of food security and also withstanding under changing climatic situation. Agriculture is a prominent source as well as a sink of greenhouse gases (GHGs). So, there is a need to modify agricultural practices in a sustainable way to overcome these problems. Developing climate smart agriculture is thus crucial to achieving future food security and climate change goals. It helps the agricultural system to resist damage and recover quickly by adaptation and mitigation strategies. Sustainable Intensification is an essential means of adapting to climate change, also resulting in lower emissions per unit of output. With its emphasis on improving risk management, information flows and local institutions to support adaptive capacity, CSA provides the foundations for incentivizing and enabling intensification. Since climate smart agriculture is defined along three pillars (productivity increases, building resilience and adapting, and GHG emission reduction), key concepts such as productivity, resilience, vulnerability and carbon sequestration provide indicators for future empirical measurements of the climate smart agriculture concept.


2021 ◽  
Author(s):  
Lena Fuldauer ◽  
Scott Thacker ◽  
Robyn Haggis ◽  
Francesco Fuso Nerini ◽  
Robert Nicholls ◽  
...  

Abstract The international community has committed to achieve 17 Sustainable Development Goals (SDGs) by 2030 and to enhance climate action under the Paris Agreement. Yet achievement of the SDGs is already threatened by climate-change impacts. Here we show that further adaptation this decade is urgently required to safeguard 68% of SDG targets against acute and chronic threats from climate change. We analyse how the relationship between SDG targets and climate-change impacts is mediated by ecosystems and socio-economic sectors, which provides a framework for targeting adaptation. Adaptation of wetlands, rivers, cropland, construction, water, electricity and housing in the most vulnerable countries should be a global priority to safeguard sustainable development by 2030. We have applied our systems framework at the national scale in Saint Lucia and Ghana, which is helping to align National Adaptation Plans with the SDGs, thus ensuring that adaptation is contributing to, rather than detracting from, sustainable development.


2020 ◽  
Author(s):  
Jonathan Doelman ◽  
Tom Kram ◽  
Benjamin Bodirsky ◽  
Isabelle Weindle ◽  
Elke Stehfest

<p>The human population has substantially grown and become wealthier over the last decades. These developments have led to major increases in the use of key natural resources such as food, energy and water causing increased pressure on the environment throughout the world. As these trends are projected to continue into the foreseeable future, a crucial question is how the provision of resources as well as the quality of the environment can be managed sustainably.</p><p>Environmental quality and resource provision are intricately linked. For example, food production depends on availability of water, land suitable for agriculture, and favourable climatic circumstances. In turn, food production causes climate change due to greenhouse gas emissions, and affects biodiversity through conversion of natural vegetation to agriculture and through the effects of excessive fertilizer and use of pesticides. There are many examples of the complex interlinkages between different production systems and environmental issues. To handle this complexity the nexus concept has been introduced which recognizes that different sectors are inherently interconnected and must be investigated in an integrated, holistic manner.</p><p>Until now, the nexus literature predominantly exists of local studies or qualitative descriptions. This study present the first qualitative, multi-model nexus study at the global scale, based on scenarios simultaneously developed with the MAgPIE land use model and the IMAGE integrated assessment model. The goal is to quantify synergies and trade-offs between different sectors of the water-land-energy-food-climate nexus in the context of sustainable development goals (SDGs). Each scenario is designed to substantially improve one of the nexus sectors water, land, energy, food or climate. A number of indicators that capture important aspects of both the nexus sectors and related SDGs is selected to assess whether these scenarios provide synergies or trade-offs with other nexus sectors, and to quantify the effects. Additionally a scenario is developed that aims to optimize policy action across nexus sectors providing an example of a holistic approach that achieves multiple sustainable development goals.</p><p>The results of this study highlight many synergies and trade-offs. For example, an important trade-off exists between climate change policy and food security targets: large-scale implementation of bio-energy and afforestation to achieve stringent climate targets negatively impacts food security. An interesting synergy exists between the food, water and climate sectors: promoting healthy diets reduces water use, improves water quality and increases the uptake of carbon by forests.</p>


2020 ◽  
Vol 22 (1) ◽  
pp. 112-118
Author(s):  
Karina Utenkova ◽  

Introduction. The article is devoted to the problems of agricultural development as a basis for ensuring food security in Ukraine. Food security is one of the important components of economic security, which creates a basis for further progress and development of the state. Achieving food security is one of the Global Goals for Sustainable Development by 2030, set by the UN to member countries at the Summit on Sustainable Development. The purpose of the article is to reveal the problems and prospects for the development of the agricultural sector in the context of ensuring food security in Ukraine. Results. It has been determined that the contribution of agricultural production to the GDP in Ukraine is quite significant. According to the results of 2018, 89% of agricultural enterprises have received a profit. The consumption of main types of food products by the population of Ukraine is less than the scientifically substantiated norms, namely: the actual consumption of meat is 64% of the norm; milk and dairy products – 52%; eggs – 94.8%; fish – 59%; fruits, berries and grapes – 53%. At the same time, there is a steady increase in the share of agricultural products in the structure of exports (in 2019 – 44.2%). According to the Global Food Security Index, Ukraine does not have the best positions and yields not only to all European countries, but also to those countries to which it exports food. Conclusions. Ukraine occupies the 76th out of 112 positions in the 2019 Global Food Security Index. Problems that pose potential threats to food security are acute, particularly, the lack of balance in the diet of Ukrainians. Due to the products of animal origin, the caloric value of the diet is provided only by 28% at the optimal level of 55%. The share of the population’s expenditures on food products is unacceptably high: more than half of the total aggregate expenditures, which is higher than the similar indicators of the EU countries by 3-5 times. The increase in agricultural production should take place in compliance with environmental norms and international food quality standards.


2021 ◽  
pp. 775-812
Author(s):  
Alan Boyle ◽  
Catherine Redgwell

This chapter looks at the relationship between the World Trade Organization (WTO) and international trade in terms of international environmental law. Twenty-five years after the WTO system came into operation it appears that neither trade law nor environmental law have trumped each other. Rather, there has been a process of accommodation which is still ongoing. The chapter ends by making some conclusions on the arguments presented in this book and the issues currently being faced. The current policy of encouraging free trade cannot always be made environmentally friendly and this will always be the case. The problem becomes clear if we consider climate change. Free trade and globalisation by nature exacerbates the difficulties of regulating environmental issues. In addition, one of the key problems with sustainable development as a concept is that there has been too much emphasis on development, and not nearly enough on sustainability, then a policy of promoting free trade is part of that problem.


Sustainability and nutrition, Environmental impacts, nutrition policy, Sustainable development goals, Food security, Climate change and obesity


Sign in / Sign up

Export Citation Format

Share Document