scholarly journals Root biomass and root traits of Alnus glutinosa show size-dependent and opposite patterns in a drained and a rewetted forest peatland

2020 ◽  
Author(s):  
Sarah Schwieger ◽  
Gesche Blume-Werry ◽  
Felix Ciesiolka ◽  
Alba Anadon-Rosell

Abstract Background and Aims Forest peatlands represent 25 % of global peatlands and store large amounts of carbon (C) as peat. Traditionally they have been drained in order to increase forestry yield, which may cause large losses of C from the peat. Rewetting aims to stop these losses and to restore the initial storage function of the peatlands. As roots represent major peat-forming elements in these systems, we sampled roots with diameter <5 mm in a drained and a rewetted forest peatland in north-east Germany to evaluate differences in tree biomass investments below ground, root functional characteristics and root age. Methods We cored soil next to Alnus glutinosa stems and sorted root biomass into <1, 1–2 and 2–5 mm diameter classes. We measured biomass distribution and specific root area (SRA) in 10-cm depth increments down to 50 cm, and estimated root age from annual growth rings. Key Results Root biomass in the rewetted site was more than double that in the drained site. This difference was mostly driven by very fine roots <1 mm, which accounted for 51 % of the total root biomass and were mostly (75 %) located in the upper 20 cm. For roots <1 mm, SRA did not differ between the sites. However, SRA of the 1–2 mm and 2–5 mm diameter roots was higher in the drained than in the rewetted site. Root age did not differ between sites. Conclusions The size-dependent opposite patterns between root biomass and their functional characteristics under contrasting water regimes indicate differences between fine and coarse roots in their response to environmental changes. Root age distribution points to similar root turnover rates between the sites, while higher root biomass in the rewetted site clearly indicates larger tree C stocks below ground under rewetting, supporting the C sink function of the ecosystem.

2018 ◽  
Vol 285 (1885) ◽  
pp. 20181240 ◽  
Author(s):  
Xiaojuan Liu ◽  
Stefan Trogisch ◽  
Jin-Sheng He ◽  
Pascal A. Niklaus ◽  
Helge Bruelheide ◽  
...  

Forest ecosystems are an integral component of the global carbon cycle as they take up and release large amounts of C over short time periods (C flux) or accumulate it over longer time periods (C stock). However, there remains uncertainty about whether and in which direction C fluxes and in particular C stocks may differ between forests of high versus low species richness. Based on a comprehensive dataset derived from field-based measurements, we tested the effect of species richness (3–20 tree species) and stand age (22–116 years) on six compartments of above- and below-ground C stocks and four components of C fluxes in subtropical forests in southeast China. Across forest stands, total C stock was 149 ± 12 Mg ha −1 with richness explaining 28.5% and age explaining 29.4% of variation in this measure. Species-rich stands had higher C stocks and fluxes than stands with low richness; and, in addition, old stands had higher C stocks than young ones. Overall, for each additional tree species, the total C stock increased by 6.4%. Our results provide comprehensive evidence for diversity-mediated above- and below-ground C sequestration in species-rich subtropical forests in southeast China. Therefore, afforestation policies in this region and elsewhere should consider a change from the current focus on monocultures to multi-species plantations to increase C fixation and thus slow increasing atmospheric CO 2 concentrations and global warming.


1986 ◽  
Vol 16 (3) ◽  
pp. 529-538 ◽  
Author(s):  
Henry L. Gholz ◽  
Laurel C. Hendry ◽  
Wendell P. Cropper Jr.

Seasonal patterns of live, dead, and unknown viability fine (diameter, ≤10 mm) roots of pine and other vegetation in a young and old slash pine stand were sampled using monthly soil coring over a 24-month period. A distinct unimodal pattern for roots <1 mm in diameter in the surface soil was observed. Live roots increased in the spring to a peak in midsummer and then declined. Larger roots and roots deeper in the soil showed less distinct seasonal patterns, although maximum and minimum annual biomass values were sometimes significantly different. Decomposition of fine roots in buried mesh bags averaged 15–20% per year for roots <5 mm in diameter. An analysis of seasonal dynamics and decompositon rates were combined to construct organic matter budgets for the forest floor and soil. Estimated net root production for roots ≤10 mm in diameter was 590 and 626 g m−2 year−1 in the young and old stand, respectively. Root turnover contributed 214 and 452 g m−2 year−1 to detrital pools on the two sites, with the balance of production accumulating as standing root biomass or lost in decomposition. Root production and turnover rates decreased with increasing root diameter; most production was from roots <1 mm. Pine root production was greater and nonpine production was less in the older stand than in the younger stand. Compared with other temperate and boreal forests, root biomass was high and net root production relatively low. The low production:biomass ratio may be characteristic of low latitude (warm) and (or) low nutrient forest types.


2005 ◽  
Vol 21 (4) ◽  
pp. 427-434 ◽  
Author(s):  
H. Asbjornsen ◽  
N. Velázquez-Rosas ◽  
R. García-Soriano ◽  
C. Gallardo-Hernández

Although fire is occurring at greater frequencies and spatial scales in the moist tropics, few studies have examined the ecological impacts of fire in tropical montane cloud forest (TMCF). This study, conducted in the Chimalapas region of Oaxaca, Mexico, documents changes in live tree biomass, live fine-root biomass, and fallen and standing dead wood 4 y following deep ground fires occurring in TMCF during the 1997–98 El Niño Southern Oscillation event. Forests growing on two different substrates (metamorphic and sedimentary) and having three different statures (mean canopy heights: 20–30 m, 15–20 m and 4–6 m) were assessed within six paired plots established on adjacent burned and unburned forest sites. Total live tree biomass was 82% and 88% lower for burned TMCF growing on metamorphic and sedimentary substrates, respectively, compared with unburned TMCF. Nearly 100% of the living biomass was killed in elfin TMCF located on exposed sedimentary limestone at the highest elevations. Live fine-root biomass in the upper organic soil horizon of burned TMCF sites was 49% lower on metamorphic substrates and 77% lower on sedimentary substrates compared with unburned sites. The amount of total dead wood was 3- to 14-fold greater in burned forests compared with unburned forests. These results suggest that first-time fires in relatively undisturbed TMCF can cause dramatic changes in live above- and below-ground biomass at levels greatly exceeding values reported for most lowland tropical rain forests. These patterns may be attributed to the slower decomposition rates and thick organic soils typical of TMCF, combined with the relatively fast drainage associated with steep topography and, in some locations, sedimentary limestone-derived substrates.


2015 ◽  
Vol 95 (2) ◽  
pp. 87-93 ◽  
Author(s):  
Martin A. Bolinder ◽  
Thomas Kätterer ◽  
Christopher Poeplau ◽  
Gunnar Börjesson ◽  
Leon E. Parent

Bolinder, M. A., Kätterer, T., Poeplau, C., Börjesson, G. and Parent, L. E. 2015. Net primary productivity and below-ground crop residue inputs for root crops: Potato (Solanum tuberosum L.) and sugar beet (Beta vulgaris L.). Can. J. Soil Sci. 95: 87–93. Root crops are significant in agro-ecosystems of temperate climates. However, the amounts of crop residues for these crop types are not well documented and they need to be accounted for in the modeling of soil organic carbon dynamics. Our objective was to review field measurements of root biomass left in the soil as crop residues at harvest for potato and sugar beet. We considered estimates for crop residue inputs as root biomass presented in the literature and some unpublished results. Our analysis showed that compared to, for example, cereals, the contribution of below-ground net primary productivity (NPP) to crop residues is at least two to three times lower for root crops. Indeed, the field measurements indicated that root biomass for topsoils only represents on average 25 to 30 g dry matter (DM) m−2 yr−1. Other estimates, albeit variable and region-specific, tended to be higher. We suggest relative plant DM allocation coefficients for agronomic yield (RP), above-ground biomass (RS) and root biomass (RR) components, expressed as a proportion of total NPP. These coefficients, representative for temperate climates (0.739:0.236:0.025 for potato and 0.626:0.357:0.017 for sugar beet), should be useful in the modeling of agro-ecosystems that include root crops.


Beskydy ◽  
2013 ◽  
Vol 6 (1) ◽  
pp. 33-42
Author(s):  
Petr Holub ◽  
Ivan Tůma ◽  
Karel Fiala

We assessed below-ground net primary productivity (BNPP) in the wet submontane Cirsium meadow occurred in the highland region of the Czech Republic. Effect of four different fertilization levels on BNPP was estimated in 1992. At the beginning of the growing season (April 29), total dry mass of rhizomes, roots and total below-ground plant parts of unfertilized stand reached 177, 1478 and 1657 g.m-2, respectively. Their living parts formed 42 % of their total dry mass. In comparison with unfertilized stands, however, the greatest accumulation of dry mass of rhizomes (504 g.m-2), roots (1503 g.m-2) and total below-ground dry mass (2008 g.m-2) was reached after application of 90 kgN.ha-1. Similarly, the highest BNPP values for living (435 g.m-2.yr-1) and total below-ground dry mass (351 g.m-2.yr-1) were calculated for the stand affected by the same amount of fertilization. These data show how variable role grasslands can play in accumulation and turn over of root biomass due to different levels of fertilization.


2007 ◽  
Vol 37 (11) ◽  
pp. 2260-2269 ◽  
Author(s):  
Anthony R. Taylor ◽  
Jian R. Wang ◽  
Han Y.H. Chen

Red spruce ( Picea rubens Sarg.) forests are an ecologically and economically important forest type in eastern Canada. We quantified the carbon (C) stocks of natural red spruce dominated stands in central Nova Scotia. Twenty-four stands over a 140 year chronosequence were sampled. Within each stand, major C pools including above- and below-ground tree biomass, shrub and herb vegetation, dead organic matter, and upper (0–10 cm) mineral soil were measured. A nonlinear four-parameter logistic function was fitted to the total site C stock data to describe the change in total ecosystem C storage over time. Total site C storage increased throughout stand development in a general sigmoidal pattern, increasing from 94.4 Mg C·ha–1 in the youngest age-class to a maximum of 247.0 Mg C·ha–1 in the 81- to 100-year-old age-class, then decreasing in the oldest age-classes. Carbon pools of live vegetation, standing dead trees, and downed woody debris displayed recognizable changes in C storage throughout stand development, conforming to some of the fundamental ideas on forest stand dynamics. Overall, above- and below-ground tree biomass had the greatest influence on total site C storage dynamics. These results are likely to be integrated into further forest management plans and generalized in other contexts to evaluate carbon stocks at the regional scale.


2013 ◽  
Vol 93 (5) ◽  
pp. 941-950 ◽  
Author(s):  
Melissa M. Arcand ◽  
J. Diane Knight ◽  
Richard E. Farrell

Arcand, M. M., Knight, J. D. and Farrell, R. E. 2013. Temporal dynamics of nitrogen rhizodeposition in field pea as determined by 15 N labeling. Can. J. Plant Sci. 93: 941–950. Assessing the contribution of symbiotically fixed N2 to soil from pulse crops necessitates a full accounting of the total crop residue N remaining in the field after seed harvest. Below-ground N, including root and rhizodeposit N, comprises an important component of this total plant N balance – without it the N input to soil is underestimated. Under controlled conditions in a greenhouse, N in intact roots and N rhizodeposition were quantified in field pea (Pisum sativum L.) using the cotton-wick 15N labeling technique. Plants were supplied with 15N on a continuous basis and harvested at the vegetative stage (nine leaves unfolded), flowering, and maturity. As the plants aged, the 15N enrichment in the rhizosphere soil decreased, whereas that in the bulk soil increased, suggesting that N released as root exudates comprised a more important proportion of N rhizodeposition in plants at the early vegetative stage compared with mature plants. In mature plants, N rhizodeposition was comprised predominantly of N associated with root turnover. The contribution of N rhizodeposition recovered in soil to the total plant N balance decreased from 17.8% at the vegetative stage harvest, to 12.3% at flowering, and finally to 7.5% at maturity. However, the total amount of root-derived N released to soil by pea increased with plant development. Below-ground N, including N rhizodeposition and N in intact roots contributed 11.3% to the total plant N balance of mature pea.


2015 ◽  
Vol 12 (14) ◽  
pp. 4373-4383 ◽  
Author(s):  
Z. Luo ◽  
E. Wang ◽  
H. Zheng ◽  
J. A. Baldock ◽  
O. J. Sun ◽  
...  

Abstract. Soil carbon (C) models are important tools for understanding soil C balance and projecting C stocks in terrestrial ecosystems, particularly under global change. The initialization and/or parameterization of soil C models can vary among studies even when the same model and data set are used, causing potential uncertainties in projections. Although a few studies have assessed such uncertainties, it is yet unclear what these uncertainties are correlated with and how they change across varying environmental and management conditions. Here, applying a process-based biogeochemical model to 90 individual field experiments (ranging from 5 to 82 years of experimental duration) across the Australian cereal-growing regions, we demonstrated that well-designed optimization procedures enabled the model to accurately simulate changes in measured C stocks, but did not guarantee convergent forward projections (100 years). Major causes of the projection uncertainty were due to insufficient understanding of how microbial processes and soil C pool change to modulate C turnover. For a given site, the uncertainty significantly increased with the magnitude of future C input and years of the projection. Across sites, the uncertainty correlated positively with temperature but negatively with rainfall. On average, a 331 % uncertainty in projected C sequestration ability can be inferred in Australian agricultural soils. This uncertainty would increase further if projections were made for future warming and drying conditions. Future improvement in soil C modelling should focus on how the microbial community and its C use efficiency change in response to environmental changes, and better conceptualization of heterogeneous soil C pools and the C transformation among those pools.


2019 ◽  
Vol 6 (2) ◽  
pp. 180890 ◽  
Author(s):  
Zhanyi Wang ◽  
Jing Jin ◽  
Yanan Zhang ◽  
Xiaojuan Liu ◽  
Yongling Jin ◽  
...  

The impacts of large herbivores on plant communities differ depending on the plants and the herbivores. Few studies have explored how herbivores influence root biomass. Root growth of vegetation was studied in the field with four treatments: sheep grazing alone (SG), cattle grazing alone (CG), mixed grazing with cattle and sheep (MG) and no grazing (CK). Live and total root biomasses were measured using the root ingrowth core and the drilling core, respectively. After 2 years of grazing, total root biomass showed a decreasing trend while live root biomass increased with time during the growing seasons. Belowground net primary production (BNPP) among the treatments varied from 166 ± 32 to 501 ± 88 g m −2 and root turnover rates (RTR) varied from 0.25 ± 0.05 to 0.70 ± 0.11 year −1 . SG had the greatest BNPP and RTR, while the CG had the smallest BNPP and RTR. BNPP and RTR of the MG treatment were between those of the CG and SG treatments. BNPP and RTR of the CK were similar to MG treatment. Compared with other treatments, CG had a greater impact on dominant tall grasses species in communities. SG could decrease community diversity. MG eliminated the disadvantages of single-species grazing and was beneficial to community diversity and stability.


2009 ◽  
Vol 6 (2) ◽  
pp. 275-284 ◽  
Author(s):  
G. Schaepman-Strub ◽  
J. Limpens ◽  
M. Menken ◽  
H. M. Bartholomeus ◽  
M. E. Schaepman

Abstract. Peatlands accumulated large carbon (C) stocks as peat in historical times. Currently however, many peatlands are on the verge of becoming sources with their C sequestration function becoming sensitive to environmental changes such as increases in temperature, decreasing water table and enhanced nitrogen deposition. Long term changes in vegetation composition are both, a consequence and indicator of future changes in C sequestration. Spatial continuous accurate assessment of the vegetation composition is a current challenge in keeping a close watch on peatland vegetation changes. In this study we quantified the fractional cover of three major plant functional types (PFTs; Sphagnum mosses, graminoids, and ericoid shrubs) in peatlands, using field spectroscopy reflectance measurements (400–2400 nm) on 25 plots differing in PFT cover. The data was validated using point intercept methodology on the same plots. Our results showed that the detection of open Sphagnum versus Sphagnumcovered by vascular plants (shrubs and graminoids) is feasible with an R2 of 0.81. On the other hand, the partitioning of the vascular plant fraction into shrubs and graminoids revealed lower correlations of R2 of 0.54 and 0.57, respectively. This study was based on a dataset where the reflectance of all main PFTs and their pure components within the peatland was measured at local spatial scales. Spectrally measured species or plant community abundances can further be used to bridge scaling gaps up to canopy scale, ultimately allowing upscaling of the C balance of peatlands to the ecosystem level.


Sign in / Sign up

Export Citation Format

Share Document