Vaginal mucus in mice: Developmental and gene expression features of epithelial mucous cells during pregnancy

Author(s):  
Makoto Sugiyama ◽  
Nao Machida ◽  
Arata Yasunaga ◽  
Nanako Terai ◽  
Hanae Fukasawa ◽  
...  

Abstract The vagina is the site of copulation and serves as the birth canal. It also provides protection against external pathogens. In mice, due to the absence of cervical glands, the vaginal epithelium is the main producer of vaginal mucus. The development and differentiation of vaginal epithelium-constituting cells and the molecular characteristics of vaginal mucus have not been thoroughly examined. Here, we characterized vaginal mucous cell development and the expression of mucus-related factors in pregnant mice. The vaginal mucous epithelium layer thickened and became multilayered after day 12 of pregnancy and secreted increasing amounts of mucus until early postpartum. Using histochemistry and transmission electron microscopy, we found supra-basal mucous cells as probable candidates for precursor cells. In vaginal mucous cells, the expression of TFF1, a stabilizer of mucus, was high, and some members of mucins and antimicrobial peptides (MUC5B and DEFB1) were expressed in a stage-dependent manner. In summary, this study presents the partial characterization of vaginal epithelial mucous cell lineage and expression of genes encoding several peptide substances that may affect vaginal tissue homeostasis and mucosal immunity during pregnancy and parturition.

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii295-iii295
Author(s):  
Annette Wu ◽  
Tak Mak ◽  
Jerome Fortin

Abstract Diffuse midline gliomas (DMGs) are aggressive childhood brain tumors with a dismal prognosis. Most of these tumors carry K27M mutations in histone H3-encoding genes, particularly H3F3A and HIST1H3B. In addition, activating mutations in ACVR1 and PIK3CA co-occur in a subset of DMGs. To understand how these lesions drive the development of DMGs, we generated genetically engineered mouse models in which Acvr1G328V, Hist1h3bK27M, and Pik3caH1047R are targeted to the OLIG2-expressing cell lineage. Animals carrying Acvr1G328V and Pik3caH1047R, with (“AHPO”) or without (“APO”) Hist1h3bK27M, developed high-grade diffuse gliomas involving midline and forebrain regions. Neither Acvr1G328V nor Pik3caH1047R drove tumorigenesis by themselves, but Acvr1G328V was sufficient to cause oligodendroglial differentiation arrest, pointing to a role in the earliest stages of gliomas formation. Transcriptomic analyses of AHPO and APO tumors indicated a predominantly proneural and oligodendrocyte precursor-like gene expression signature, consistent with the corresponding human pathology. Genes encoding transcription factors (TFs) with dual roles in controlling glial and neuronal differentiation were upregulated in tumors. Some of these genes were mildly induced by Acvr1G328V alone. Functional experiments using CRISPR/Cas9-mediated gene editing in patient-derived cell lines confirmed a role for some of these TFs in controlling DMG cell fitness. Overall, our results suggest that Pik3caH1047R consolidates Acvr1G328V-induced glial differentiation arrest to drive DMG development and progression.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Ting Zhao ◽  
Shengfan Ye ◽  
Zimu Tang ◽  
Liwei Guo ◽  
Zhipeng Ma ◽  
...  

AbstractReactive oxygen species (ROS) stress has been demonstrated as potentially critical for induction and maintenance of cellular senescence, and been considered as a contributing factor in aging and in various neurological disorders including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). In response to low-level ROS stress, the expression of Δ133p53, a human p53 isoform, is upregulated to promote cell survival and protect cells from senescence by enhancing the expression of antioxidant genes. In normal conditions, the basal expression of Δ133p53 prevents human fibroblasts, T lymphocytes, and astrocytes from replicative senescence. It has been also found that brain tissues from AD and ALS patients showed decreased Δ133p53 expression. However, it is uncharacterized if Δ133p53 plays a role in brain aging. Here, we report that zebrafish Δ113p53, an ortholog of human Δ133p53, mainly expressed in some of the radial glial cells along the telencephalon ventricular zone in a full-length p53-dependent manner. EDU-labeling and cell lineage tracing showed that Δ113p53-positive cells underwent cell proliferation to contribute to the neuron renewal process. Importantly, Δ113p53M/M mutant telencephalon possessed less proliferation cells and more senescent cells compared to wild-type (WT) zebrafish telencephalon since 9-months old, which was associated with decreased antioxidant genes expression and increased level of ROS in the mutant telencephalon. More interestingly, unlike the mutant fish at 5-months old with cognition ability, Δ113p53M/M zebrafish, but not WT zebrafish, lost their learning and memory ability at 19-months old. The results demonstrate that Δ113p53 protects the brain from aging by its antioxidant function. Our finding provides evidence at the organism level to show that depletion of Δ113p53/Δ133p53 may result in long-term ROS stress, and finally lead to age-related diseases, such as AD and ALS in humans.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 891
Author(s):  
Caiyun Sun ◽  
Yang Qiu ◽  
Qin Ren ◽  
Xiao Zhang ◽  
Baolong Cao ◽  
...  

The serotonin (5-hydroxytryptamine, 5-HT) signaling system is involved in a variety of physiological functions, including the control of cognition, reward, learning, memory, and vasoconstriction in vertebrates. Contrary to the extensive studies in the mammalian system, little is known about the molecular characteristics of the avian serotonin signaling network. In this study, we cloned and characterized the full-length cDNA of three serotonin receptor genes (HTR1B, HTR1E and HTR1F) in chicken pituitaries. Synteny analyses indicated that HTR1B, HTR1E and HTR1F were highly conserved across vertebrates. Cell-based luciferase reporter assays showed that the three chicken HTRs were functional, capable of binding their natural ligands (5-HT) or selective agonists (CP94253, BRL54443, and LY344864) and inhibiting intracellular cAMP production in a dose-dependent manner. Moreover, activation of these receptors could stimulate the MAPK/ERK signaling cascade. Quantitative real-time PCR analyses revealed that HTR1B, HTR1E and HTR1F were primarily expressed in various brain regions and the pituitary. In cultured chicken pituitary cells, we found that LY344864 could significantly inhibit the secretion of PRL stimulated by vasoactive intestinal peptide (VIP) or forskolin, revealing that HTR1F might be involved in the release of prolactin in chicken. Our findings provide insights into the molecular mechanism and facilitate a better understanding of the serotonergic modulation via HTR1B, HTR1E and HTR1F in avian species.


2021 ◽  
Vol 9 (6) ◽  
pp. 1172
Author(s):  
Ksenia Tuchynskaya ◽  
Viktor Volok ◽  
Victoria Illarionova ◽  
Egor Okhezin ◽  
Alexandra Polienko ◽  
...  

Currently the only effective measure against tick-borne encephalitis (TBE) is vaccination. Despite the high efficacy of approved vaccines against TBE, rare cases of vaccine failures are well documented. Both host- and virus-related factors can account for such failures. In this work, we studied the influence of mouse strain and sex and the effects of cyclophosphamide-induced immunosuppression on the efficacy of an inactivated TBE vaccine. We also investigated how an increased proportion of non-infectious particles in the challenge TBE virus would affect the protectivity of the vaccine. The vaccine efficacy was assessed by mortality, morbidity, levels of viral RNA in the brain of surviving mice, and neutralizing antibody (NAb) titers against the vaccine strain and the challenge virus. Two-dose vaccination protected most animals against TBE symptoms and death, and protectivity depended on strain and sex of mice. Immunosuppression decreased the vaccine efficacy in a dose-dependent manner and changed the vaccine-induced NAb spectrum. The vaccination protected mice against TBE virus neuroinvasion and persistence. However, viral RNA was detected in the brain of some asymptomatic animals at 21 and 42 dpi. Challenge with TBE virus enriched with non-infectious particles led to lower NAb titers in vaccinated mice after the challenge but did not affect the protective efficacy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Elvira Garza-González ◽  
Paola Bocanegra-Ibarias ◽  
Eduardo Rodríguez-Noriega ◽  
Esteban González-Díaz ◽  
Jesús Silva-Sanchez ◽  
...  

Abstract Background This study aimed to determine the epidemiological, microbiological, and molecular characteristics of an outbreak of carbapenem-resistant Leclercia adecarboxylata in three hospitals associated with the unintended use of contaminated total parental nutrition (TPN). Methods For 10 days, 25 patients who received intravenous TPN from the same batch of a formula developed sepsis and had blood cultures positive for L. adecarboxylata. Antimicrobial susceptibility and carbapenemase production were performed in 31 isolates, including one from an unopened bottle of TPN. Carbapenemase-encoding genes, extended-spectrum β-lactamase–encoding genes were screened by PCR, and plasmid profiles were determined. Horizontal transfer of carbapenem resistance was performed by solid mating. Clonal diversity was performed by pulsed-field gel electrophoresis. The resistome was explored by whole-genome sequencing on two selected strains, and comparative genomics was performed using Roary. Results All 31 isolates were resistant to aztreonam, cephalosporins, carbapenems, trimethoprim/sulfamethoxazole, and susceptible to gentamicin, tetracycline, and colistin. Lower susceptibility to levofloxacin (51.6%) and ciprofloxacin (22.6%) was observed. All the isolates were carbapenemase producers and positive for blaNDM-1, blaTEM-1B, and blaSHV-12 genes. One main lineage was detected (clone A, 83.9%; A1, 12.9%; A2, 3.2%). The blaNDM-1 gene is embedded in a Tn125-like element. Genome analysis showed genes encoding resistance for aminoglycosides, quinolones, trimethoprim, colistin, phenicols, and sulphonamides and the presence of IncFII (Yp), IncHI2, and IncHI2A incompatibility groups. Comparative genomics showed a major phylogenetic relationship among L. adecarboxylata I1 and USDA-ARS-USMARC-60222 genomes, followed by our two selected strains. Conclusion We present epidemiological, microbiological, and molecular evidence of an outbreak of carbapenem-resistant L. adecarboxylata in three hospitals in western Mexico associated with the use of contaminated TPN.


1993 ◽  
Vol 264 (6) ◽  
pp. C1600-C1608 ◽  
Author(s):  
T. Sandouk ◽  
D. Reda ◽  
C. Hofmann

Adipocytes play an important role in normal physiology as a major site for systemic energy homeostasis. In disorders such as diabetes, adipocyte function is markedly altered. In this study, we investigated the effect of pioglitazone, a novel antidiabetic agent known to lower plasma glucose in animal models of diabetes mellitus, on cellular differentiation and expression of adipose-specific genes. Treatment of confluent 3T3-F442A preadipocyte cultures for 7 days with pioglitazone (Pio; 1 microM) and insulin (Ins; 0.17 microM) resulted in > 95% cell differentiation into lipid-accumulating adipocytes in comparison with 60-80% cell differentiation by treatment with either agent alone. Analysis of triglyceride accumulation showed increases of triglyceride content over time above untreated preadipocytes by treatment of the cells with Ins, Pio, and especially with Ins + Pio. Basal glucose transport, as measured by cellular uptake of 2-deoxy-D-[14C]glucose, was likewise enhanced in a time-dependent manner by treatment of preadipocytes with Ins, Pio, or Ins + Pio, such that a synergistic effect resulted from the combined treatment with both agents. It was further determined that RNA transcript abundance for genes encoding glucose transporters GLUT-1 and GLUT-4, as well as the adipose-specific genes encoding adipsin and aP2, were increased by the Ins, Pio, or Ins + Pio treatment. Taken together, these findings indicate that pioglitazone is a potent adipogenic agent. By promoting differentiation, this agent may move cells into a state active for glucose uptake, storage, and metabolism.


2021 ◽  
Vol 30 (1) ◽  
pp. 19-28
Author(s):  
Yasser M. Ismail ◽  
Sahar M. Fayed ◽  
Fatma M. Elesawy ◽  
Nora Z Abd El-Halim ◽  
Ola S. El-Shimi

Background: The biggest concern for a burn team is a nosocomial infection in burn patients, which is a significant health issue. Pseudomonas aeruginosa is an extremely troublesome drug-resistant bacterium in the world today. We are now faced with rising P. aeruginosa pan-drug-resistant clones in hospital settings. Objectives: To evaluate the distribution of different virulence factors generated by P. aeruginosa isolated from burn wound infections, together with its antimicrobial susceptibility. Methodology: The isolates reported as P. aeruginosa were further tested for the presence of various phenotypic and genotypic virulence factors including (Biofilm formation, lipase, protease, gelatinase, DNase, bile esculin hydrolysis & hemolysin). Also, genes encoding (nan 1 and Exo A) were investigated by PCR using specific primers. All the isolates were tested for their antimicrobial susceptibility patterns. Results: The study reported that toxins and enzymes were expressed by the tested strains in varying proportions; (92.0%) were producing β-hemolysin, lipase (86%), and protease (86%). The formation of biofilm was observed in 84%. Exo A (70%) was the main virulence gene found in the tested strains. Nan 1 gene was identified in 30% of the samples. 82% of MDRPA isolates were found. There is indeed a relationship between biofilm production and drug resistance, as well as the presence of virulence genes (nan 1 and Exo A) were associated with certain patients and burn wounds characteristics as burn size, burn wound depth, length of hospital stays, and socioeconomic status. Conclusions: Correlation of Pseudomonas aeruginosa virulence profiles with burn wounds and patient-related data can be useful in establishing of an appropriate preventive protocol for hospitalized patients with P. aeruginosa burn serious infections. The targeting of these bacterial virulence arsenals is also a promising approach to developing alternative drugs, which act by attenuating the aggressiveness of the pathogen and reducing its potential to cause vigorous infection.


2021 ◽  
Vol 16 (3) ◽  
pp. 175-184
Author(s):  
Karthika Suryaletha ◽  
Sivakumar K Chandrika ◽  
Sabu Thomas

Aim: Enterococcus faecalis is a leading nosocomial pathogen in biofilm-associated polymicrobial infections. The study aims to understand pathogenicity and biofilm determinants of the pathogen by genome analysis. Methodology: Genome sequencing of a strong biofilm forming clinical isolate Enterococcus faecalis SK460 devoid of Fsr quorum-signaling system, was performed and comparative genomics was carried out among a set of pathogenic biofilm formers and nonpathogenic weak biofilm formers. Results: Analysis revealed a pool of virulence and adhesion related factors associated with pathogenicity. Absence of CRISPR-Cas system facilitated acquisition of pheromone responsive plasmid, pathogenicity island and phages. Comprehensive analysis identified a subset of accessory genes encoding polysaccharide lyase, sugar phosphotransferase system, phage proteins and transcriptional regulators exclusively in pathogenic biofilm formers. Conclusion: The study identified a set of genes specific to pathogenic biofilm formers and these can act as targets which in turn help to develop future treatment endeavors against enterococcal infections.


Medicina ◽  
2021 ◽  
Vol 57 (9) ◽  
pp. 879 ◽  
Author(s):  
Hye-Sung Lee ◽  
Bong-Soo Park ◽  
Hae-Mi Kang ◽  
Jung-Han Kim ◽  
Sang-Hun Shin ◽  
...  

Background and Objectives: Malignant glioblastoma (GBM) is caused by abnormal proliferation of glial cells, which are found in the brain. The therapeutic effects of surgical treatment, radiation therapy, and chemo-therapy against GBM are relatively poor compared with their effects against other tumors. Luteolin is abundant in peanut shells and is also found in herbs and other plants, such as thyme, green pepper, and celery. Luteolin is known to be effective against obesity and metabolic syndrome. The anti-inflammatory, and anti-cancer activities of luteolin have been investigated. Most studies have focused on the antioxidant and anti-inflammatory effects of luteolin, which is a natural flavonoid. However, the association between the induction of apoptosis by luteolin in GBM and autophagy has not yet been investigated. This study thus aimed to confirm the occurrence of luteolin-induced apoptosis and autophagy in GBM cells and to assess their relationship. Materials and Methods: A172 and U-373MG glioblastoma cell lines were used for this experiment. We confirmed the apoptosis effect of Luteolin on GBM cells using methods such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, immunofluorescence, Flow cytometry (FACS) western blot, and real-time quantitative PCR (qPCR). Results: In the luteolin-treated A172 and U-373MG cells, cell viability decreased in a concentration- and time-dependent manner. In addition, in A172 and U-373MG cells treated with luteolin at concentrations greater than 100 μM, nuclear fragmentation, which is a typical morphological change characterizing apoptosis, as well as fragmentation of caspase-3 and Poly (ADP-ribose) polymerase (PARP), which are apoptosis-related factors, were observed. Autophagy was induced after treatment with at least 50 μM luteolin. Inhibition of autophagy using 3MA allowed for a low concentration of luteolin to more effectively induce apoptosis in A172 and U-373MG cells. Conclusions: Results showed that luteolin induces apoptosis and autophagy and that the luteolin-induced autophagy promotes cell survival. Therefore, an appropriate combination therapy involving luteolin and an autophagy inhibitor is expected to improve the prognosis of GBM treatment.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 105
Author(s):  
Olga M. Zając ◽  
Stefan Tyski ◽  
Agnieszka E. Laudy

An increase of nosocomial infections caused by Stenotrophomonas maltophilia strains has recently been observed all over the world. The isolation of these bacteria from the blood is of particular concern. In this study we performed the phenotypic and genotypic characterization of 94 S. maltophilia isolates, including isolates from patients hospitalized in a tertiary Warsaw hospital (n = 79) and from outpatients (n = 15). All isolates were found to be susceptible to trimethoprim-sulfamethoxazole and minocycline, while 44/94 isolates demonstrated a reduction in susceptibility to levofloxacin. A large genetic variation was observed among the isolates tested by pulsed-field gel electrophoresis. A clonal relationship with 100% similarity was observed between isolates within two sub-pulsotypes: the first included nine bloodstream isolates and the second involved six. Multilocus sequence typing showed two new sequence types (ST498 and ST499) deposited in public databases for molecular typing. Moreover, the presence of genes encoding ten different efflux pumps from the resistance-nodulation-division family and the ATP-binding cassette family was shown in the majority of the 94 isolates. The obtained knowledge about the prevalence of efflux pump genes in clinical S. maltophilia strains makes it possible to predict the scale of the risk of resistance emergence in strains as a result of gene overexpression.


Sign in / Sign up

Export Citation Format

Share Document