scholarly journals Severe Sleep Restriction Suppresses Appetite Independent of Effects on Food Intake-Regulating Hormones

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1672-1672
Author(s):  
Patrick Radcliffe ◽  
Claire Whitney ◽  
Heather Fagnant ◽  
Marques Wilson ◽  
Tracey Smith ◽  
...  

Abstract Objectives Several nights of moderate (4–5 hr/night) sleep restriction increases appetite and energy intake, and may alter circulating concentrations of food intake-regulating hormones. Whether more severe sleep restriction has similar effects is undetermined. This study aimed to determine the effects of severe, short-term sleep restriction on appetite and food intake-regulating hormones. Methods Randomized, crossover study in which 18 healthy men (mean ± SD: BMI 24.4 ± 2.3 kg/m2, 20 ± 2 yr) were assigned to three consecutive nights of sleep restriction (SR; 2 hr sleep/night) or adequate sleep (AS; 7–9 hr sleep/night) with controlled feeding and activity throughout the 3-day period. On day 4, participants consumed a standardized breakfast. Appetite ratings, and circulating ghrelin, peptide-YY (PYY), glucagon-like peptide (GLP-1), insulin, and glucose concentrations were measured before and for 4hr after the meal. Ad libitum energy and macronutrient intakes were then measured at a provided buffet lunch. Results Median PYY (–21%) and GLP-1 (–14%) concentrations were lower, and median glucose (3%) concentrations were higher after SR relative to after AS (main effect of condition, P < 0.05; condition-by-time interaction, P = NS). Ghrelin and insulin did not differ between conditions. Mean hunger (–23%), desire to eat (–23%), and prospective consumption (–18%) ratings were all lower, and mean fullness (27%) ratings were higher after SR relative to after AS (main effect of condition, P < 0.05; condition-by-time interaction, P = NS). Ad libitum energy intake at the lunch meal was 14% lower after SR relative to after AS (–332 kcal [95% CI: −479, −185] P < 0.001), but macronutrient composition did not differ. Conclusions In contrast with reported effects of moderate sleep restriction, severe sleep restriction reduced appetite and energy intake. Appetite suppression was likely not due to the observed differences in food intake-regulating hormones as sleep-restriction induced reductions in PYY and GLP-1 concentrations would be expected to increase appetite. Funding Sources US Army MRDC. Authors’ views do not reflect official DoD or Army policy.

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Joshua R Sparks ◽  
Ryan R Porter ◽  
Shawn D Youngstedt ◽  
Kimberly P Bowyer ◽  
J Larry Durstine ◽  
...  

Abstract Study Objectives This study examined how glucose, glucose regulatory hormones, insulin sensitivity, and lipoprotein subclass particle concentrations and sizes change with sleep restriction during weight loss elicited by calorie restriction. Methods Overweight or obese adults were randomized into an 8-week calorie restriction intervention alone (CR, n = 12; 75% female; body mass index = 31.4 ± 2.9 kg/m2) or combined with sleep restriction (CR+SR, n = 16; 75% female; body mass index = 34.5 ± 3.1 kg/m2). Participants in both groups were given the same instructions to reduce calorie intake. Those in the CR+SR group were instructed to reduce their habitual time-in-bed by 30–90 minutes 5 days each week with 2 ad libitum sleep days. Fasting venous blood samples were collected at pre- and post-intervention. Results Differential changes were found between the two groups (p = 0.028 for group × time interaction) in glucagon concentration, which decreased in the CR group (p = 0.016) but did not change in CR+SR group. Although changes in mean HDL particle (HDL-P) size and visfatin concentration were not statistically different between groups (p = 0.066 and 0.066 for group×time interaction, respectively), mean HDL-P size decreased only in the CR+SR group (Cohen’s d = 0.50, p = 0.022); visfatin concentrations did not change significantly in either group but appeared to decrease in the CR group (Cohen’s d = 0.67, p = 0.170) but not in the CR+SR group (Cohen’s d = 0.43, p = 0.225). Conclusion These results suggest that moderate sleep restriction, despite the presence of periodic ad libitum sleep, influences lipoprotein subclass particles and glucose regulation in individuals undergoing calorie restriction. Clinical trial registration: ClinicalTrials.gov (NCT02413866, Weight Outlooks by Restriction of Diet and Sleep)


2007 ◽  
Vol 97 (3) ◽  
pp. 579-583 ◽  
Author(s):  
Angela Harper ◽  
Anita James ◽  
Anne Flint ◽  
Arne Astrup

The rising rate of obesity has been blamed on increased consumption of sugar-sweetened soft drinks, such as carbonated sodas, which fail to satisfy hunger. The objective of the present study was to compare the effect on appetite and energy intake of a sugar-sweetened beverage (cola) and a chocolate milk drink, matched for energy content and volume. It was hypothesised that chocolate milk may be more satiating because of its protein content. Twenty-two healthy young men (age 23 (sd 1·8) years) of normal weight (BMI 22·2 (sd 1·5) kg/m2) were recruited to the randomised cross-over study. Visual analogue scales were used to record subjective appetite ratings every 30 min on each of two test days. A drink of 500 ml cola or chocolate milk (900 kJ) was ingested 30 min before an ad libitum lunch. Satiety and fullness were significantly greater (P = 0·0007, P = 0·0004, respectively) 30 min after chocolate milk than after cola. Ratings of prospective consumption and hunger were significantly greater after cola than after chocolate milk, both immediately after preload intake (P = 0·008, P = 0·01, respectively) and 30 min afterwards (P = 0·004, P = 0·01, respectively). There was no significant difference (P = 0·42) in ad libitum lunch intake after ingestion of chocolate milk (3145 (sd 1268) kJ) compared with cola (3286 (sd 1346) kJ). The results support the hypothesis that sweetened soft drinks are different from milk products in their impact on short-term hunger and satiety, although differences in subjective appetite scores were not translated into differences in energy intake.


2013 ◽  
Vol 115 (11) ◽  
pp. 1599-1609 ◽  
Author(s):  
Mads Rosenkilde ◽  
Michala Holm Reichkendler ◽  
Pernille Auerbach ◽  
Signe Toräng ◽  
Anne Sofie Gram ◽  
...  

Weight loss induced by endurance exercise is often disappointing, possibly due to an increase in energy intake mediated through greater appetite. The aim of this study was to evaluate fasting, postprandial, and postexercise appetite regulation after an intervention prescribing two amounts of endurance exercise. Sixty-four sedentary, overweight, healthy young men were randomized to control (CON), moderate-dose (MOD: ∼30 min/day), or high-dose (HIGH: ∼60 min/day) endurance exercise for 12 wk. Along with subjective appetite ratings, plasma ghrelin, glucagon, insulin, peptide YY3–36, glucose, free fatty acids, and glycerol were measured during fasting and in relation to a breakfast meal and an acute bout of exercise, both at baseline and at follow-up. Ad libitum lunch energy intake was evaluated 3 h after the breakfast meal. Despite different amounts of endurance exercise, the subjects lost similar amounts of fat mass (MOD: 4.2 ± 0.5 kg; HIGH: 3.7 ± 0.5 kg). Fasting and postprandial insulin decreased ∼20% in both exercise groups ( P < 0.03 vs. CON). Appetite measurements were not upregulated in the fasting and postprandial states. On the contrary, fasting and postprandial ratings of fullness and postprandial PYY3–36 increased in HIGH ( P < 0.001 vs. CON). Ad libitum lunch energy intake remained unchanged over the course of the intervention. In both exercise groups, plasma ghrelin increased in relation to acute exercise after training. Thus neither moderate nor high doses of daily endurance exercise increased fasting and postprandial measures of appetite, but a high dose of exercise was associated with an increase in fasting and meal-related ratings of fullness and satiety.


2019 ◽  
Vol 44 (11) ◽  
pp. 1141-1149 ◽  
Author(s):  
Mathew Butterworth ◽  
Matthew Lees ◽  
Paul Harlow ◽  
Karen Hind ◽  
Lauren Duckworth ◽  
...  

Deficiencies in protein and energy intakes are partly responsible for age-related sarcopenia. We investigated the effects of supplements matched in essential amino acid (EAA) content (7.5 g) on energy intake and appetite. Ten women aged 69.2 ± 2.7 years completed 3 trials in a randomised, crossover design. Composite appetite scores, peptide-YY (PYY), and insulin responses to a 200-mL whey protein (WP) isolate (275 kJ), a 50-mL EAA gel (GEL, 478 kJ), or nothing as the control (CON) condition were investigated over 1 h, followed by an ad libitum breakfast. Energy intake at breakfast (CON, 1957 ± 713; WP, 1413 ± 623; GEL, 1963 ± 611 kJ) was higher in CON and GEL than in WP (both P = 0.006). After accounting for supplement energy content, energy intake in GEL was higher than in CON (P = 0.0006) and WP (P = 0.0008). Time-averaged area under the curve for composite appetite scores (CON, 74 ± 20; WP, 50 ± 22; GEL, 60 ± 16 mm) was higher in CON than WP (P = 0.015). Time-averaged area under the curve for PYY (CON, 87 ± 13; WP, 119 ± 27; GEL, 97 ± 22 pg·mL−1) was higher in WP than CON (P = 0.009) and GEL (P = 0.012). In conclusion, supplementation with WP facilitated an increase in protein intake, whereas supplementation with GEL increases in both energy and protein intakes, when consumed before an ad libitum breakfast. Such findings highlight potential gel-based EAA supplementation intake for addressing age-related sarcopenia.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3893 ◽  
Author(s):  
Desiree M. Sigala ◽  
Adrianne M. Widaman ◽  
Bettina Hieronimus ◽  
Marinelle V. Nunez ◽  
Vivien Lee ◽  
...  

Sugar-sweetened beverage (sugar-SB) consumption is associated with body weight gain. We investigated whether the changes of (Δ) circulating leptin contribute to weight gain and ad libitum food intake in young adults consuming sugar-SB for two weeks. In a parallel, double-blinded, intervention study, participants (n = 131; BMI 18–35 kg/m2; 18–40 years) consumed three beverages/day containing aspartame or 25% energy requirement as glucose, fructose, high fructose corn syrup (HFCS) or sucrose (n = 23–28/group). Body weight, ad libitum food intake and 24-h leptin area under the curve (AUC) were assessed at Week 0 and at the end of Week 2. The Δbody weight was not different among groups (p = 0.092), but the increases in subjects consuming HFCS- (p = 0.0008) and glucose-SB (p = 0.018) were significant compared with Week 0. Subjects consuming sucrose- (+14%, p < 0.0015), fructose- (+9%, p = 0.015) and HFCS-SB (+8%, p = 0.017) increased energy intake during the ad libitum food intake trial compared with subjects consuming aspartame-SB (−4%, p = 0.0037, effect of SB). Fructose-SB decreased (−14 ng/mL × 24 h, p = 0.0006) and sucrose-SB increased (+25 ng/mL × 24 h, p = 0.025 vs. Week 0; p = 0.0008 vs. fructose-SB) 24-h leptin AUC. The Δad libitum food intake and Δbody weight were not influenced by circulating leptin in young adults consuming sugar-SB for 2 weeks. Studies are needed to determine the mechanisms mediating increased energy intake in subjects consuming sugar-SB.


2000 ◽  
Vol 83 (1) ◽  
pp. 7-14 ◽  
Author(s):  
A. M. Johnstone ◽  
E. Shannon ◽  
S. Whybrow ◽  
C. A. Reid ◽  
R. J. Stubbs

The objectives of the present study were to examine the effects of (1) ingesting mandatory snacks v. no snacks and (2) the composition of isoenergetically-dense snacks high in protein, fat or carbohydrate, on food intake and energy intake (EI) in eight men with ad libitum access to a diet of fixed composition. Subjects were each studied four times in a 9 d protocol per treatment. On days 1–2, subjects were given a medium-fat maintenance diet estimated at 1·6 × resting metabolic rate (RMR). On days 3–9, subjects consumed three mandatory isoenergetic, isoenergetically dense (380 kJ/100 g) snacks at fixed time intervals (11.30, 15.30 and 19.30 hours). Total snack intake comprised 30 % of the subjects' estimated daily energy requirements. The treatments were high protein (HP), high carbohydrate (HC), high fat (HF) and no snack (NS). The order was randomized across subjects in a counterbalanced, Latin-square design. During the remainder of the day, subjects had ad libitum (meal size and frequency) access to a covertly manipulated medium-fat diet of fixed composition (fat: carbohydrate: protein, 40:47:13 by energy), energy density 550 kJ/100 g. All foods eaten were investigator-weighed before ingestion and left-overs were weighed after ingestion. Subjective hunger and satiety feelings were tracked hourly during waking hours using visual analogue scales. Ad libitum EI amounted to 13·9 MJ/d on the NS treatment compared with 11·7, 11·7 and 12·2 MJ/d on the HP, HC and HF diets respectively (F(3,21) 5·35; P = 0·007, sed 0·66). Total EI values were not significantly different at 14·6, 14·5, 15·0 and 14·2 MJ/d respectively. Snack composition did not differentially affect total daily food intake or EI. Average daily hunger was unaffected by the composition of the snacks. Only at 12.00 hours did subjects feel significantly more hungry during the NS condition, relative to the other dietary treatments (F(3,18) 4·42; P = 0·017). Body weight was unaffected by dietary treatment. In conclusion, snacking per se led to compensatory adjustments in feeding behaviour in lean men. Snack composition (with energy density controlled) did not affect the amount eaten of a diet of fixed composition. Results may differ in real life where subjects can alter both composition and amount of food they eat and energy density is not controlled.


2000 ◽  
Vol 84 (2) ◽  
pp. 227-231 ◽  
Author(s):  
Benjamin Buemann ◽  
Søren Toubro ◽  
Anne Raben ◽  
John Blundell ◽  
Arne Astrup

A double-blind randomized crossover study was performed with nineteen normal-weight men to investigate the effect on subsequent ad libitum food intake of replacing 29 g sucrose with 29 g D-TAGATOSE AS SWEETENER TO A BREAKFAST MEAL. d-Tagatose is a malabsorbed stereoisomer of fructose with potential application as a bulk sweetener. Food intake was measured at lunch offered 4 h after the breakfast meal, during the afternoon with access to abundant snacks, and finally at a supper buffet 9 h after the breakfast. Energy intake at lunch and during the snacking period was similar after ingesting the two sugars, while it was 15 % lower after ingesting d-tagatose than with sucrose at supper (P < 0·05). Gastrointestinal factors such as the osmotic effects of unabsorbed d-tagatose causing distension of the gut might have mediated the acute appetite-suppressing effect. The present paper also refers to data from a preceding study in which we observed an increased self-reported energy intake after ingestion of d-tagatose compared with sucrose which, in fact, suggests a relative hyperphagic effect of d-tagatose. However, self-reported food intake may be biased by selective under-reporting and this subsequent study with a more controlled assessment of food intake was therefore conducted. This present study did not support any hyperphagic effect of d-tagatose, but rather suggests that d-tagatose may contribute to a reduced energy intake.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1517 ◽  
Author(s):  
Jia Jiet Lim ◽  
Sally D. Poppitt

Developing novel foods to suppress energy intake and promote negative energy balance and weight loss has been a long-term but commonly unsuccessful challenge. Targeting regulation of appetite is of interest to public health researchers and industry in the quest to develop ‘functional’ foods, but poor understanding of the underpinning mechanisms regulating food intake has hampered progress. The gastrointestinal (GI) or ‘satiety’ peptides including cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) secreted following a meal, have long been purported as predictive biomarkers of appetite response, including food intake. Whilst peptide infusion drives a clear change in hunger/fullness and eating behaviour, inducing GI-peptide secretion through diet may not, possibly due to modest effects of single meals on peptide levels. We conducted a review of 70 dietary preload (DIET) and peptide infusion (INFUSION) studies in lean healthy adults that reported outcomes of CCK, GLP-1 and PYY. DIET studies were acute preload interventions. INFUSION studies showed that minimum increase required to suppress ad libitum energy intake for CCK, GLP-1 and PYY was 3.6-, 4.0- and 3.1-fold, respectively, achieved through DIET in only 29%, 0% and 8% of interventions. Whether circulating ‘thresholds’ of peptide concentration likely required for behavioural change can be achieved through diet is questionable. As yet, no individual or group of peptides can be measured in blood to reliably predict feelings of hunger and food intake. Developing foods that successfully target enhanced secretion of GI-origin ‘satiety’ peptides for weight loss remains a significant challenge.


2014 ◽  
Vol 112 (4) ◽  
pp. 657-661 ◽  
Author(s):  
Eric Robinson ◽  
Inge Kersbergen ◽  
Suzanne Higgs

Attentional and memory processes underpin appetite control, but whether encouraging overweight individuals to eat more ‘attentively’ can promote reductions in energy consumption is unclear. In the present study with a between-subjects design, a total of forty-eight overweight and obese females consumed a fixed lunchtime meal. Their ad libitum energy intake of high-energy snack food was observed during a second laboratory session that occurred later that day. In the focused-attention condition, participants ate their lunch while listening to audio instructions that encouraged them to pay attention to the food being eaten. In a control condition, participants ate while listening to an audio book with a neutral (non-food-related) content. To test whether focused attention influenced food intake via enhancing the memory of the earlier consumed meal, we measured the participants' memory of their lunchtime meal. Ad libitum snack intake was approximately 30 % lower for participants in the focused-attention condition than for those in the control condition, and this difference was statistically significant. There was limited evidence that attention decreased later food intake by enhancing memory representation of the earlier consumed meal. Eating attentively can lead to a substantial decrease in later energy intake in overweight and obese individuals. Behavioural strategies that encourage a more ‘attentive’ way of eating could promote sustained reductions in energy intake and weight loss.


2016 ◽  
Vol 41 (3) ◽  
pp. 324-331 ◽  
Author(s):  
Daniel P. Bailey ◽  
David R. Broom ◽  
Bryna C.R. Chrismas ◽  
Lee Taylor ◽  
Edward Flynn ◽  
...  

Breaking up periods of prolonged sitting can negate harmful metabolic effects but the influence on appetite and gut hormones is not understood and is investigated in this study. Thirteen sedentary (7 female) participants undertook three 5-h trials in random order: (i) uninterrupted sitting (SIT), (ii) seated with 2-min bouts of light-intensity walking every 20 min (SIT + LA), and (iii) seated with 2-min bouts of moderate-intensity walking every 20 min (SIT + MA). A standardised test drink was provided at the start of each trial and an ad libitum pasta test meal provided at the end of each trial. Subjective appetite ratings and plasma acylated ghrelin, peptide YY, insulin, and glucose were measured at regular intervals. Area under the curve (AUC) was calculated for each variable. AUC values for appetite and gut hormone concentrations were unaffected in the activity breaks conditions compared with uninterrupted sitting (linear mixed modelling: p > 0.05). Glucose AUC was lower in SIT + MA than in SIT + LA (p = 0.004) and SIT (p = 0.055). There was no difference in absolute ad libitum energy intake between conditions (p > 0.05); however, relative energy intake was lower in SIT + LA (39%; p = 0.011) and SIT + MA (120%; p < 0.001) than in SIT. In conclusion, breaking up prolonged sitting does not alter appetite and gut hormone responses to a meal over a 5-h period. Increased energy expenditure from activity breaks could promote an energy deficit that is not compensated for in a subsequent meal.


Sign in / Sign up

Export Citation Format

Share Document