Etiology of early-onset neonatal sepsis and antibiotic resistance in Bukavu, Democratic Republic of the Congo

Author(s):  
Guy M Mulinganya ◽  
Maud Claeys ◽  
Serge Z Balolebwami ◽  
Bertrand A Bamuleke ◽  
Jules I Mongane ◽  
...  

Abstract Background The Democratic Republic of the Congo (DRC) ranks among the countries with the highest neonatal death rates (between 14 and 28‰). In the DRC, neonatal sepsis causes 15.6% of this mortality, but data on the bacterial etiology and associated drug susceptibility are lacking. Methods Hemocultures of 150 neonates with possible early onset neonatal sepsis (pEOS) were obtained at the Hôpital Provincial Général de Référence de Bukavu (HPGRB, Bukavu, DRC). The newborns with pEOS received an empirical first-line antimicrobial treatment (ampicillin, cefotaxime and gentamicin), based on the synopsis of international guidelines for the management of EOS which are in line with WHO recommendations. Isolates were identified by matrix-assisted laser desorption ionization - time of flight mass spectrophotometry (MALDI-TOF MS). Antibiotic resistance was assessed using the disk diffusion method. Results A total of 50 strains was obtained from 48 patients and identified. The three most prevalent species were Enterobacter cloacae complex (42%), Klebsiella pneumoniae (18%) and Serratia marcescens (12%). Enterobacter cloacae isolates were resistant to all first-line antibiotics. All K. pneumoniae and S. marcescens isolates were resistant to ampicillin, and the majority of the K. pneumoniae and half of the S. marcescens isolates were resistant to both cefotaxime and gentamicin. All E. cloacae complex strains, 89% of the K. pneumoniae and half of S. marcescens had an extended-spectrum ß-lactamase (ESBL) phenotype. Conclusions The most prevalent pathogens causing EOS in Bukavu were E. cloacae complex, K. pneumoniae and S. marcescens. Most of these isolates were resistant to the WHO recommended antibiotics.

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 447
Author(s):  
Barbara Kot ◽  
Agata Grużewska ◽  
Piotr Szweda ◽  
Jolanta Wicha ◽  
Urszula Parulska

The aim of this study was to determine antibiotic resistance patterns and the prevalence of uropathogenes causing urinary tract infections (UTIs) in patients hospitalized in January–June 2020 in central Poland. Antimicrobial susceptibility testing was performed using the disk-diffusion method. Escherichia coli (52.2%), Klebsiella pneumoniae (13.7%), Enterococcus faecalis (9.3%), E. faecium (6.2%), and Proteus mirabilis (4,3%) were most commonly isolated from urine samples. E. coli was significantly more frequent in women (58.6%) (p = 0.0089) and in the age group 0–18, while K. pneumoniae was more frequent in men (24.4%) (p = 0.0119) and in individuals aged 40–60 and >60. Gram-negative species showed resistance to ampicillin. K. pneumoniae were resistant to amoxicillin plus clavulanic acid (75.0%), piperacillin plus tazobactam (76.2%), cefotaxime (76.2%), cefuroxime (81.0%), ciprofloxacin (81.0%), and trimethoprim plus sulphamethoxazole (81.0%). Carbapenems were effective against all E. coli and P. mirabilis. Some K. pneumoniae (13.6%) produced metallo-β-lactamases (MBLs). E. coli (22.6%), K. pneumoniae (81.8%), and all E. faecium were multidrug-resistant (MDR). Some E. coli (26.2%), K. pneumoniae (63.6%), and P. mirabilis (14.3%) isolates produced extended-spectrum beta-lactamases (ESBL). Vancomycin-resistant E. faecium was also found. This study showed that the possibilities of UTIs therapy using available antibiotics become limited due to the increasing number of antibiotic-resistant uropathogens.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 930
Author(s):  
Delia Gambino ◽  
Sonia Sciortino ◽  
Sergio Migliore ◽  
Lucia Galuppo ◽  
Roberto Puleio ◽  
...  

The presence of Salmonella spp. in marine animals is a consequence of contamination from terrestrial sources (human activities and animals). Bacteria present in marine environments, including Salmonella spp., can be antibiotic resistant or harbor resistance genes. In this study, Salmonella spp. detection was performed on 176 marine animals stranded in the Sicilian coasts (south Italy). Antibiotic susceptibility, by disk diffusion method and MIC determination, and antibiotic resistance genes, by molecular methods (PCR) of the Salmonella spp. strains, were evaluated. We isolated Salmonella spp. in three animals, though no pathological signs were detected. Our results showed a low prevalence of Salmonella spp. (1.7%) and a low incidence of phenotypic resistance in three Salmonella spp. strains isolated. Indeed, of the three strains, only Salmonella subsp. enterica serovar Typhimurium from S. coeruleoalba and M. mobular showed phenotypic resistance: the first to ampicillin, tetracycline, and sulphamethoxazole, while the latter only to sulphamethoxazole. However, all strains harbored resistance genes (blaTEM, blaOXA, tet(A), tet(D), tet(E), sulI, and sulII). Although the low prevalence of Salmonella spp. found in this study does not represent a relevant health issue, our data contribute to the collection of information on the spread of ARGs, elements involved in antibiotic resistance, now considered a zoonosis in a One Health approach.


2015 ◽  
Vol 78 (1) ◽  
pp. 65-71 ◽  
Author(s):  
MOHD IKHSAN KHALID ◽  
JOHN YEW HUAT TANG ◽  
NABILA HUDA BAHARUDDIN ◽  
NASIHA SHAKINA RAHMAN ◽  
NURUL FAIZZAH RAHIMI ◽  
...  

The present study was conducted to investigate the prevalence and antibiotic resistance among Campylobacter jejuni in ulam at farms and retail outlets located in Kuala Terengganu, Malaysia. A total of 526 samples (ulam, soil, and fertilizer) were investigated for the presence of C. jejuni and the gene for cytolethal distending toxin (cdt) by using a multiplex PCR method. Antibiotic susceptibility to 10 types of antibiotics was determined using the disk diffusion method for 33 C. jejuni isolates. The average prevalence of contaminated samples from farms, wet markets, and supermarkets was 35.29, 52.66, and 69.88%, respectively. The cdt gene was not detected in 24 of the 33 C. jejuni isolates, but 9 isolates harbored cdtC. Antibiotic resistance in C. jejuni isolates was highest to penicillin G (96.97% of isolates) followed by vancomycin (87.88%), ampicillin (75.76%), erythromycin (60.61%), tetracycline (9.09%), amikacin (6.06%), and norfloxacin (3.03%); none of the isolates were resistant to ciprofloxacin, enrofloxacin, and gentamicin. In this study, C. jejuni was present in ulam, and some isolates were highly resistant to some antibiotics but not to quinolones. Thus, appropriate attention and measures are required to prevent C. jejuni contamination on farms and at retail outlets.


2021 ◽  
Vol 14 (8) ◽  
Author(s):  
Seyed Ali Bazghandi ◽  
Mohsen Arzanlou ◽  
Hadi Peeridogaheh ◽  
Hamid Vaez ◽  
Amirhossein Sahebkar ◽  
...  

Background: Drug resistance and virulence genes are two key factors for the colonization of Pseudomonas aeruginosa in settings with high antibiotic pressure, such as hospitals, and the development of hospital-acquired infections. Objectives: The objective of this study was to investigate the prevalence of drug resistance and virulence gene profiles in clinical isolates of P. aeruginosa in Ardabil, Iran. Methods: A total of 84 P. aeruginosa isolates were collected from clinical specimens of Ardabil hospitals and confirmed using laboratory standard tests. The disk diffusion method was used for antibiotic susceptibility testing and polymerase chain reaction (PCR) for the identification of P. aeruginosa virulence genes. Results: The highest and the lowest antibiotic resistance rates of P. aeruginosa strains were against ticarcillin-clavulanate (94%) and doripenem (33.3%), respectively. In addition, the frequency of multidrug-resistant (MDR) P. aeruginosa was 55.9%. The prevalence of virulence factor genes was as follows: algD 84.5%, lasB 86.9%, plcH 86.9%, plcN 86.9%, exoU 56%, exoS 51.2%, toxA 81%, nan1 13.1%, and pilB 33.3%. A significant association was observed between resistance to some antibiotics and the prevalence of virulence genes in P. aeruginosa. Conclusions: Our results revealed a high prevalence of antibiotic resistance, especially MDR, and virulence-associated genes in clinical isolates of P. aeruginosa in Ardabil hospitals. Owing to the low resistance rates against doripenem, gentamicin, and tobramycin, these antibiotics are recommended for the treatment of infections caused by highly resistant and virulent P. aeruginosa strains.


Author(s):  
Abolfazl Jafari-Sales ◽  
Zahra Sadeghi Deylamdeh ◽  
Afsoon Shariat

Introduction: Staphylococcus aureus causes a wide range of infections and as a multivalent pathogen is one of the causative agents of nosocomial and community infections. Therefore, the aim of this study was to identify and determine the pattern of antibiotic resistance of methicillin-resistant Staphylococcus aureus (MRSA) isolates from patients in hospitals and medical centers in Marand city and also to evaluate the presence of mecA gene. Materials and Methods: In this cross-sectional descriptive study, 385 samples of S. aureus were collected from different clinical samples of patients in hospitals and medical centers of Marand city. S. aureus was identified using standard biochemical methods.  Methicillin resistance was determined by disk diffusion method in the presence of oxacillin and cefoxitin. The pattern of antibiotic resistance of the strains was determined by disk diffusion method and according to CLSI recommendation and also PCR method was used to evaluate the frequency of MecA gene. Results: In the present study, out of 385 samples of S. aureus, 215 (55.84%) samples were methicillin resistant. PCR results for mecA gene showed that 110 samples had mecA gene.  The highest antibiotic resistance was observed against penicillin (100%) and erythromycin (83.63%). Most MRSA were isolated from urine and wound samples. Conclusion: The results of this study indicate the prevalence of methicillin-resistant species and also the increase in antibiotic resistance of MRSA to various antibiotics.  Therefore, in order to prevent increased resistance to other antibiotics, it is recommended to avoid inappropriate use of antibiotics.


2011 ◽  
Vol 56 (No. 7) ◽  
pp. 352-357 ◽  
Author(s):  
K. Trivedi ◽  
S. Cupakova ◽  
R. Karpiskova

A collection of 250 enterococci isolated from various food-stuffs were used to investigate seven virulence determinants and the microbial susceptibility of eight antibiotics. Species-specific PCR revealed the presence of E. faecalis (127 isolates), E. faecium (77 isolates), E. casseliflavus (21 isolates), E. mundtii (19 isolates) and E. durans (six isolates). Multiplex PCR for virulence factors showed that from a total 250 isolates, 221 (88.4%) carried one or more virulence-encoding genes. β-Haemolytic activity was also evident in enterococcal species other than E. faecalis and E. faecium. Species other than E. faecalis and E. faecium isolated from food are also seen to harbour the potential for virulence. Antimicrobial susceptibility testing using the disk diffusion method showed that of the total 250 isolates, 114 (46%) were resistant to cephalothin and 94 (38%) to ofloxacin. Lower antibiotic resistance was seen with ampicillin, chloramphenicol, gentamicin and teicoplanin. None of the isolates was found to be resistant to vancomycin. The results of this study show that food can play an important role in the spread of enterococci with virulence potential through the food chain to the human population.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 396 ◽  
Author(s):  
Michaela Sannettha van den Honert ◽  
Pieter Andries Gouws ◽  
Louwrens Christiaan Hoffman

Studies have shown that antibiotic resistance among wild animals is becoming a public health concern, owing to increased contact and co-habitation with domestic animals that, in turn, results in increased human contact, indirectly and directly. This type of farming practice intensifies the likelihood of antibiotic resistant traits in microorganisms transferring between ecosystems which are linked via various transfer vectors, such as rivers and birds. This study aimed to determine whether the practice of wildlife supplementary feeding could have an influence on the antibiotic resistance of the bacteria harboured by the supplementary fed wildlife, and thus play a potential role in the dissemination of antibiotic resistance throughout nature. Escherichia coli and Enterococcus were isolated from the faeces of various wildlife species from seven different farms across South Africa. The Kirby-Bauer disk diffusion method was used according to the Clinical and Laboratory Standards Institute 2018 guidelines. The E. coli (F: 57%; N = 75% susceptible) and Enterococcus (F: 67%; N = 78% susceptible) isolates from the supplementary fed (F) wildlife were in general, found to be more frequently resistant to the selection of antibiotics than from those which were not supplementary fed (N), particularly towards tetracycline (E. coli F: 56%; N: 71%/Enterococcus F: 53%; N: 89% susceptible), ampicillin (F: 82%; N = 95% susceptible) and sulphafurazole (F: 68%; N = 98% susceptible). Interestingly, high resistance towards streptomycin was observed in the bacteria from both the supplementary fed (7% susceptible) and non-supplementary fed (6% susceptible) wildlife isolates. No resistance was found towards chloramphenicol and ceftazidime.


2019 ◽  
Vol 82 (11) ◽  
pp. 1857-1863 ◽  
Author(s):  
ZAHRA S. AL-KHAROUSI ◽  
NEJIB GUIZANI ◽  
ABDULLAH M. AL-SADI ◽  
ISMAIL M. AL-BULUSHI

ABSTRACT Enterobacteria may gain antibiotic resistance and be potent pathogens wherever they are present, including in fresh fruits and vegetables. This study tested the antibiotic resistance of enterobacteria isolated from 13 types of local and imported fresh fruits and vegetables (n = 105), using the standard Kirby-Bauer disk diffusion method. Phenotypic and genotypic characterizations of AmpC β-lactamases were determined in cefoxitin-resistant isolates. Ten percent of the enterobacteria tested (n = 88) were pansusceptible, 74% were resistant to at least one antibiotic, and 16% were multidrug resistant. Enterobacteria isolates showed the highest antibiotic resistance against ampicillin (66%), cephalothin (57%), amoxicillin–clavulanic acid (33%), cefoxitin (31%), tetracycline (9%), nalidixic acid (7%), trimethoprim (6%), and kanamycin (5%). Three isolates showed intermediate resistance to the clinically important antibiotic imipenem. Escherichia coli isolated from lettuce exhibited multidrug resistance against five antibiotics. Fifteen isolates were confirmed to have AmpC β-lactamase, using the inhibitor-based test and the antagonism test; the latter test confirmed that the enzyme was an inducible type. Four types of ampC β-lactamase genes (CIT, EBC, FOX, and MOX) were detected in eight isolates: four Enterobacter cloacae isolates and one isolate each of Citrobacter freundii, Enterobacter asburiae, Enterobacter hormaechei, and Enterobacter ludwigii. It was concluded that fresh fruits and vegetables might play a role as a source or vehicle for transferring antibiotic-resistant bacteria that might spread to other countries through exportation. The clinically significant AmpC β-lactamase was rarely documented in the literature on bacteria isolated from fruits and vegetables, and to our knowledge, this is the first report on the detection of an inducible type in such commodities.


Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 616
Author(s):  
Joanne Karzis ◽  
Inge-Marié Petzer ◽  
Edward F. Donkin ◽  
Vinny Naidoo ◽  
Eric M.C. Etter

Antibiotic resistance has been reported since the 1940s in both human and veterinary medicine. Many years of monitoring milk samples in South Africa led to identification of a novel maltose-negative Staphylococcus aureus (S. aureus) strain, which appears to be an emerging pathogen. In this study, the susceptibility of this strain to antibiotics was evaluated over time, during diverse seasons in various provinces and according to somatic cell count (SCC) categories. A data set of 271 maltose-negative S. aureus isolates, from milk samples of 117 dairy herds, was examined using the disk diffusion method, between 2010 and 2017. This study also compared the susceptibility testing of 57 maltose-negative and 57 maltose-positive S. aureus isolated from 38 farms, from three provinces using minimum inhibitory concentration (MIC). The MIC results for the maltose-negative S. aureus isolates showed highest resistance to ampicillin (100%) and penicillin (47.4) and lowest resistance (1.8%) to azithromycin, ciprofloxacin and erythromycin. The maltose-negative S. aureus isolates showed overall significantly increased antibiotic resistance compared to the maltose-positive strains, as well as multidrug resistance. Producers and veterinarians should consider probability of cure of such organisms (seemingly non-chronic) when adapting management and treatment, preventing unnecessary culling.


2017 ◽  
Vol 8 (1) ◽  
pp. 174-177
Author(s):  
Rowshan Jahan Akhter ◽  
Md Mahbubul Hoque ◽  
BH Nazma Yasmeen ◽  
MAK Azad Chowdhury

Introduction : Neonatal sepsis remains an important cause of neonatal morbidity and mortality in NICU setup and a major challenge for the neonatologists. The prevalent organisms and their antibiotic resistance patterns evolve with time and with the usage of antimicrobials.Aims and Objectives : To analyze the bacteriological profile and antibiotic resistance patterns of proven neonatal sepsis cases in Dhaka Shishu Hospital.Materials and Methods : The study was Prospective observational study. All the clinically suspected cases of Neonatal Sepsis admitted to the Neonatal word from January 2015 to December 2015 were included in the study. Clinically suspected cases of neonatal sepsis further evaluated with blood cultures and antibiotic susceptibility testing using the Kirby Bauer disc diffusion method. Data was collected for the following variables: Demographic profile, haematological profile, blood culture result and antibiotic sensitivity patterns.Results : Total 96 cases clinically suspected neonatal sepsis were included in the study. Among them 29 cases (30.21%) was culture positive septicemia. Klebsiella pneumoniae was the most common isolate accounting for 31.03% cases followed by Escherichia coli 27.59%. In Klebsiella infection most common sensitivity were Imipenum and Ciprofloxacin which were 77.78 and 33.33% respectively. In E.coli common sensitive drugs were Imipenum and Amikacin. In serratia common sensitive drugs were Imipenum, Netlmicin and Ciprofloxacin.Conclusion : K. pneumoniae was the most common pathogen. Most common sensitivity was Imipenum, Amikacin, Ciprofloxacin, Gentamicin, Netlmicin, and Ceftazidime,.Northern International Medical College Journal Vol.8(1) July 2016: 174-177


Sign in / Sign up

Export Citation Format

Share Document