NLRP3 inflammasome as a key driver of vascular disease

2021 ◽  
Author(s):  
Masafumi Takahashi

Abstract Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) is an intracellular innate immune receptor that recognizes a diverse range of stimuli derived from pathogens, damaged or dead cells, and irritants. NLRP3 activation causes the assembly of a large multiprotein complex termed the NLRP3 inflammasome, and leads to the secretion of bioactive interleukin (IL)-1β and IL-18 as well as the induction of inflammatory cell death termed pyroptosis. Accumulating evidence indicates that NLRP3 inflammasome plays a key role in the pathogenesis of sterile inflammatory diseases, including atherosclerosis and other vascular diseases. Indeed, the results of the Canakinumab Anti-inflammatory Thrombosis Outcome Study trial demonstrated that IL-1β-mediated inflammation plays an important role in atherothrombotic events and suggested that NLRP3 inflammasome is a key driver of atherosclerosis. In this review, we will summarize the current state of knowledge regarding the role of NLRP3 inflammasome in vascular diseases, in particular in atherosclerosis, vascular injury, aortic aneurysm, and Kawasaki disease vasculitis, and discuss NLRP3 inflammasome as a therapeutic target for these disorders.

Author(s):  
Shuangyu Lv ◽  
Honggang Wang ◽  
Xiaotian Li

Autophagy is an important and conserved cellular pathway in which cells transmit cytoplasmic contents to lysosomes for degradation. It plays an important role in maintaining the balance of cell composition synthesis, decomposition and reuse, and participates in a variety of physiological and pathological processes. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome can induce the maturation and secretion of Interleukin-1 beta (IL-1β) and IL-18 by activating caspase-1. It is involved in many diseases. In recent years, the interplay between autophagy and NLRP3 inflammasome has been reported to contribute to many diseases including metabolic disorders related diseases. In this review, we summarized the recent studies on the interplay between autophagy and NLRP3 inflammasome in metabolic disorders to provide ideas for the relevant basic research in the future.


Author(s):  
Shuangyu Lv ◽  
Xiaotian Li ◽  
Honggang Wang

Endoplasmic reticulum (ER) is an important organelle for the protein synthesis, modification, folding, assembly, and the transport of new peptide chains. When the folding ability of ER proteins is impaired, the accumulation of unfolded or misfolded proteins in ER leads to endoplasmic reticulum stress (ERS). The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome, can induce the maturation and secretion of interleukin-1beta (IL-1β) and IL-18 through activating caspase-1. It is associated with many diseases. Studies have shown that ERS can regulate NLRP3 inflammasome in many diseases including diabetes. However, the mechanism of the effects of ERS on NLRP3 inflammasome in diabetes has not been fully understood. This review summarizes the recent researches about the effects of ERS on NLRP3 inflammasome and the related mechanism in diabetes to provide ideas for the relevant basic research in the future.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Yang Zhang ◽  
Weifang Liu ◽  
Yanqi Zhong ◽  
Qi Li ◽  
Mengying Wu ◽  
...  

NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome-mediated pyroptosis is a crucial event in the preeclamptic pathogenesis, tightly linked with the uteroplacental TLR4/NF-κB signaling. Trophoblastic glycometabolism reprogramming has now been noticed in the preeclampsia pathogenesis, plausibly modulated by the TLR4/NF-κB signaling as well. Intriguingly, cellular pyroptosis and metabolic phenotypes may be inextricably linked and interacted. Metformin (MET), a widely accepted NF-κB signaling inhibitor, may have therapeutic potential in preeclampsia while the underlying mechanisms remain unclear. Herein, we investigated the role of MET on trophoblastic pyroptosis and its relevant metabolism reprogramming. The safety of pharmacologic MET concentration to trophoblasts was verified at first, which had no adverse effects on trophoblastic viability. Pharmacological MET concentration suppressed NLRP3 inflammasome-induced pyroptosis partly through inhibiting the TLR4/NF-κB signaling in preeclamptic trophoblast models induced via low-dose lipopolysaccharide. Besides, MET corrected the glycometabolic reprogramming and oxidative stress partly via suppressing the TLR4/NF-κB signaling and blocking transcription factor NF-κB1 binding on the promoter PFKFB3, a potent glycolytic accelerator. Furthermore, PFKFB3 can also enhance the NF-κB signaling, reduce NLRP3 ubiquitination, and aggravate pyroptosis. However, MET suppressed pyroptosis partly via inhibiting PFKFB3 as well. These results provided that the TLR4/NF-κB/PFKFB3 pathway may be a novel link between metabolism reprogramming and NLRP3 inflammasome-induced pyroptosis in trophoblasts. Further, MET alleviates the NLRP3 inflammasome-induced pyroptosis, which partly relies on the regulation of TLR4/NF-κB/PFKFB3-dependent glycometabolism reprogramming and redox disorders. Hence, our results provide novel insights into the pathogenesis of preeclampsia and propose MET as a potential therapy.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1552
Author(s):  
Maria Sebastian-Valverde ◽  
Giulio M. Pasinetti

As a consequence of the considerable increase in the human lifespan over the last century, we are experiencing the appearance and impact of new age-related diseases. The causal relationships between aging and an enhanced susceptibility of suffering from a broad spectrum of diseases need to be better understood. However, one specific shared feature seems to be of capital relevance for most of these conditions: the low-grade chronic inflammatory state inherently associated with aging, i.e., inflammaging. Here, we review the molecular and cellular mechanisms that link aging and inflammaging, focusing on the role of the innate immunity and more concretely on the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, as well as how the chronic activation of this inflammasome has a detrimental effect on different age-related disorders.


Reproduction ◽  
2021 ◽  
Vol 162 (6) ◽  
pp. 449-460
Author(s):  
Zixi Chen ◽  
Yali Shan ◽  
Xingji You ◽  
Hang Gu ◽  
Chen Xu ◽  
...  

The nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays a critical role in various inflammatory diseases. We sought to investigate the role of NLRP3 inflammasome in uterine activation for labor at term and preterm. We found that NLRP3 inflammasome was activated in the myometrium tissues obtained from the pregnant women undergoing labor at term (TL) compared with those not undergoing labor (TNL) at term. NLRP3 inflammasome was also activated in amnion and chorion-deciduas in TL and preterm labor (PTL) groups. In the mouse model, uterine NLRP3 inflammasome and nuclear factor kappaB (NF-κB) were activated toward term and during labor. Treatment of pregnant mice with lipopolysaccharide (LPS) and RU38486 induced preterm birth (PTB) and also promoted uterine NLRP3 inflammasome and NF-κB activation. Treatment of pregnant mice with NLRP3 inflammasome inhibitor BAY11-7082 and MCC950 delayed the onset of labor and suppressed NLRP3 inflammasome and NF-κB activation in uterus. MCC950 postponed labor onset of the mice with LPS and RU38486 treatment and inhibited NLRP3 inflammasome activation in uterus. Our data provide the evidence that NLRP3 inflammasome is involved in uterine activation for labor onset in term and PTB in humans and mouse model.


2019 ◽  
Vol 20 (12) ◽  
pp. 2876 ◽  
Author(s):  
Carolina Pellegrini ◽  
Matteo Fornai ◽  
Luca Antonioli ◽  
Corrado Blandizzi ◽  
Vincenzo Calderone

Several lines of evidence point out the relevance of nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome as a pivotal player in the pathophysiology of several neurological and psychiatric diseases (i.e., Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis, and major depressive disorder), metabolic disorders (i.e., obesity and type 2 diabetes) and chronic inflammatory diseases (i.e., intestinal inflammation, arthritis, and gout). Intensive research efforts are being made to achieve an integrated view about the pathophysiological role of NLRP3 inflammasome pathways in such disorders. Evidence is also emerging that the pharmacological modulation of NLRP3 inflammasome by phytochemicals could represent a promising molecular target for the therapeutic management of neurological, psychiatric, metabolic, and inflammatory diseases. The present review article has been intended to provide an integrated and critical overview of the available clinical and experimental evidence about the role of NLRP3 inflammasome in the pathophysiology of neurological, psychiatric, metabolic, and inflammatory diseases, including PD, AD, MS, depression, obesity, type 2 diabetes, arthritis, and intestinal inflammation. Special attention has been paid to highlight and critically discuss current scientific evidence on the effects of phytochemicals on NLRP3 inflammasome pathways and their potential in counteracting central neuroinflammation, metabolic alterations, and immune/inflammatory responses in such diseases.


2020 ◽  
Vol 21 (21) ◽  
pp. 8145
Author(s):  
Kohei Wagatsuma ◽  
Hiroshi Nakase

The inflammasome is an intracellular molecular complex, which is mainly involved in innate immunity. Inflammasomes are formed in response to danger signals, associated with infection and injury, and mainly regulate the secretion of interleukin-1β and interleukin-18. Inflammasome dysregulation is known to be associated with various diseases and conditions, and its regulatory mechanisms have become of great interest in recent years. In the colon, inflammasomes have been reported to be associated with autophagy and the microbiota, and their dysregulation contributes to colitis and. However, the detailed role of inflammasomes in inflammatory bowel disease is still under debate because the mechanisms that regulate the inflammasome are complex and the inflammasome components and cytokines show seemingly contradictory multiple effects. Herein, we comprehensively review the literature on inflammasome functioning in the colon and describe the complex interactions of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome components with inflammatory cytokines, autophagy, and the microbiota in experimental colitis models and patients with inflammatory bowel disease.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Liang Dong ◽  
Yu-Hang Zhu ◽  
De-Xing Liu ◽  
Juan Li ◽  
Peng-Cheng Zhao ◽  
...  

Aim. To investigate the protective effects of budesonide against lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in a murine model and its underlying mechanism. Methods. Adult male C57BL/6 mice were divided into three groups: control, ALI, and ALI + budesonide groups. LPS (5 mg/kg) was intratracheally injected to induce ALI in mice. Budesonide (0.5 mg/kg) was intranasally given 1 h before LPS administration in the ALI + budesonide group. Twelve hours after LPS administration, all mice were sacrificed. Hematoxylin-eosin staining and pathological scores were used to evaluate pathological injury. Bronchoalveolar lavage was performed. The numbers of total cells, neutrophils, and macrophages in the bronchoalveolar lavage fluid (BALF) were counted. Enzyme-linked immunosorbent assay was employed to detect the proinflammatory cytokines in BALF and serum, including tumor necrosis factor- (TNF-) α, monocyte chemoattractant protein- (MCP-) 1, and interleukin- (IL-) 1β. The expression of the nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome was detected by western blotting. A lethal dose of LPS (40 mg/kg, intraperitoneally) was injected to evaluate the effects of budesonide on survival rates. Results. Budesonide pretreatment dramatically attenuated pathological injury and reduced pathological scores in mice with ALI. Budesonide pretreatment obviously reduced the numbers of total cells, neutrophils, and macrophages in the BALF of mice with ALI. Additionally, budesonide dramatically reduced TNF-α and MCP-1 expression in the BALF and serum of mice with ALI. Budesonide significantly suppressed NLRP3 and pro-caspase-1 expression in the lung and reduced IL-1β content in the BALF, indicating that budesonide inhibited the activation of the NLRP3 inflammasome. Furthermore, we found that budesonide improved the survival rates of mice with ALI receiving a lethal dose of LPS. Conclusion. Suppression of NLRP3 inflammasome activation in mice via budesonide attenuated lung injury induced by LPS in mice with ALI.


2020 ◽  
Vol 21 (15) ◽  
pp. 5386 ◽  
Author(s):  
Ana Ferrero-Andrés ◽  
Arnau Panisello-Roselló ◽  
Joan Roselló-Catafau ◽  
Emma Folch-Puy

The discovery of inflammasomes has enriched our knowledge in the pathogenesis of multiple inflammatory diseases. The NLR pyrin domain-containing protein 3 (NLRP3) has emerged as the most versatile and well-characterized inflammasome, consisting of an intracellular multi-protein complex that acts as a central driver of inflammation. Its activation depends on a tightly regulated two-step process, which includes a wide variety of unrelated stimuli. It is therefore not surprising that the specific regulatory mechanisms of NLRP3 inflammasome activation remain unclear. Inflammasome-mediated inflammation has become increasingly important in acute pancreatitis, an inflammatory disorder of the pancreas that is one of the fatal diseases of the gastrointestinal tract. This review presents an update on the progress of research into the contribution of the NLRP3 inflammasome to acute pancreatic injury, examining the mechanisms of NLRP3 activation by multiple signaling events, the downstream interleukin 1 family of cytokines involved and the current state of the literature on NLRP3 inflammasome-specific inhibitors.


Author(s):  
Zhangwang Li ◽  
Xinyue Chen ◽  
Junjie Tao ◽  
Ao Shi ◽  
Jing Zhang ◽  
...  

Emerging evidence has suggested the unique and critical role of exosomes as signal molecules vector in various diseases. Numerous researchers have been trying to identify how these exosomes function in immune progression, as this could promote their use as biomarkers for the disease process and potential promising diagnostic tools. NOD-like receptor (NLR) family, pyrin domain containing 3 (NLRP3), a tripartite protein, contains three functional domains a central nucleotide-binding and oligomerization domain (NACHT), an N-terminal pyrin domain (PYD), and a leucine-rich repeat domain (LRR). Of note, existing studies have identified exosome as a novel mediator of the NLRP3 inflammasome, which is critical in diseases progression. However, the actual mechanisms and clinical treatment related to exosomes and NLRP3 are still not fully understood. Herein, we presented an up-to-date review of exosomes and NLRP3 in diseases, outlining what is known about the role of exosomes in the activation of NLRP3 inflammasome and also highlighting areas of this topic that warrant further study.


Sign in / Sign up

Export Citation Format

Share Document