Agricultural production systems can serve as reservoir for human pathogens

2019 ◽  
Vol 366 (23) ◽  
Author(s):  
Jasper Schierstaedt ◽  
Rita Grosch ◽  
Adam Schikora

ABSTRACT Food-borne diseases are a threat to human health and can cause severe economic losses. Nowadays, in a growing and increasingly interconnected world, food-borne diseases need to be dealt with in a global manner. In order to tackle this issue, it is essential to consider all possible entry routes of human pathogens into the production chain. Besides the post-harvest handling of the fresh produce itself, also the prevention of contamination in livestock and agricultural soils are of particular importance. While the monitoring of human pathogens and intervening measures are relatively easy to apply in livestock and post-harvest, the investigation of the prevention strategies in crop fields is a challenging task. Furthermore, crop fields are interconnected with livestock via fertilizers and feed; therefore, a poor hygiene management can cause cross-contamination. In this review, we highlight the possible contamination of crop plants by bacterial human pathogens via the rhizosphere, their interaction with the plant and possible intervention strategies. Furthermore, we discuss critical issues and questions that are still open.

Author(s):  
Elim Gamze Has ◽  
Mustafa Akçelik

Salmonella is known as one of the main factors of food-borne gastroenteritis, and with this feature, it poses a great risk in terms of public health and economic losses. It is estimated that of the approximately 94 million cases of salmonellosis occurring in the world each year (about 85 percent of these are food-borne), an average of 150,000 result in death. Current social trends highlight the important health benefits of fresh produce in our daily diet. As an irony; Uncooked consumption of fresh herbal products is increasingly identified as a source of transmission for pathogens of intestinal origin, and epidemics occurring in this way are spreading rapidly. Today, the frequency of anthropogenic pathogen outbreaks associated with fresh produce, spices, and nuts has surpassed those associated with foods of animal origin. Human pathogens in the production chain; It can be transferred to plant material by basic means such as the use of animal manure, contaminated irrigation water, biological vectors (insects and animals) and contaminated seeds. In the light of these data, many intestinal pathogens have been identified as phyllo sphere-associated bacteria. Despite all these findings, there are many unknowns on the persistence and infectivity of Salmonella in contaminated plant hosts. In this review article, the factors affecting the attachment, colonization and survival of Salmonella on plant surfaces, as well as the information on the infection processes that continue with the invasion of plant tissues are discussed in the light of contemporary literature data.


2018 ◽  
Vol 2 (95) ◽  
pp. 69-72
Author(s):  
Yu.A. Tarariko ◽  
L.V. Datsko ◽  
M.O. Datsko

The aim of the work is to assess the existing and prospective models for the development of agricultural production in Central Polesie on the basis of economic feasibility and ecological balance. The evaluation of promising agricultural production systems was carried out with the help of simulation modeling of various infrastructure options at the levels of crop and multisectoral specialization of agroecosystems. The agro-resource potential of Central Polesie is better implemented in the rotation with lupine, corn and flax dolguntsem with well-developed infrastructure, including crop, livestock units, grain processing and storage systems, feed, finished products and waste processing in the bioenergetic station. The expected income for the formation of such an infrastructure is almost 8 thousand dollars. / with a payback period of capital investments of 2-3 years.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Danish Sharafat Rajput ◽  
Dong Zeng ◽  
Abdul Khalique ◽  
Samia Sharafat Rajput ◽  
Hesong Wang ◽  
...  

AbstractNecrotic enteritis (NE) is being considered as one of the most important intestinal diseases in the recent poultry production systems, which causes huge economic losses globally. NE is caused by Clostridium perfringens, a pathogenic bacterium, and normal resident of the intestinal microflora of healthy broiler chickens. Gastrointestinal tract (GIT) of broiler chicken is considered as the most integral part of pathogen’s entrance, their production and disease prevention. Interaction between C. perfringens and other pathogens such as Escherichia coli and Salmonella present in the small intestine may contribute to the development of NE in broiler chickens. The antibiotic therapy was used to treat the NE; however European Union has imposed a strict ban due to the negative implications of drug resistance. Moreover, antibiotic growth promoters cause adverse effects on human health as results of withdrawal of antibiotic residues in the chicken meat. After restriction on use of antibiotics, numerous studies have been carried out to investigate the alternatives to antibiotics for controlling NE. Thus, possible alternatives to prevent NE are bio-therapeutic agents (Probiotics), prebiotics, organic acids and essential oils which help in nutrients digestion, immunity enhancement and overall broiler performance. Recently, probiotics are extensively used alternatives to antibiotics for improving host health status and making them efficient in production. The aim of review is to describe a replacement to antibiotics by using different microbial strains as probiotics such as bacteria and yeasts etc. having bacteriostatic properties which inhibit growth of pathogens and neutralize the toxins by different modes of action.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Quan Li ◽  
Jian Yin ◽  
Zheng Li ◽  
Zewei Li ◽  
Yuanzhao Du ◽  
...  

AbstractSalmonella is an important food-borne pathogen associated with public health and high economic losses. To investigate the prevalence and the characteristics of Salmonella in a pig slaughterhouse in Yangzhou, a total of 80 Salmonella isolates were isolated from 459 (17.43%) samples in 2016–2017. S. Derby (35/80, 43.75%) was the most prevalent, followed by S. Rissen (16/80, 20.00%) and S. Newlands (11/80, 13.75%). The highest rates of susceptibility were observed to cefoxitin (80/80, 100.0%) and amikacin (80/80, 100.0%), followed by aztreonam (79/80, 98.75%) and nitrofurantoin (79/80, 98.75%). The highest resistance rate was detected for tetracycline (65/80, 81.25%), followed by ampicillin (60/80, 75.00%), bactrim (55/80, 68.75%), and sulfisoxazole (54/80, 67.50%). Overall, 91.25% (73/80) of the isolates were resistant to at least one antibiotic, while 71.25% (57/80) of the isolate strains were multidrug resistant in the antimicrobial susceptibility tested. In addition, 86.36% (19/22) of the 22 antimicrobial resistance genes in the isolates were identified. Our data indicated that the resistance to certain antimicrobials was significantly associated, in part, with antimicrobial resistance genes. Furthermore, 81.25% (65/80) isolates harbored the virulence gene of mogA, of which 2 Salmonella Typhimurium isolates carried the mogA, spvB and spvC virulence genes at the same time. The results showed that swine products in the slaughterhouse were contaminated with multidrug resistant Salmonella commonly, especially some isolates carry the spv virulence genes. The virulence genes might facilitate the dissemination of the resistance genes to consumers along the production chain, suggesting the importance of controlling Salmonella during slaughter for public health.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarah E. Moorey ◽  
Fernando H. Biase

Abstract The development of replacement heifers is at the core of cow-calf beef production systems. In 2020, the USDA, National Agricultural Statistics Service reported 5.771 million beef heifers, 500 pounds and over, are under development for cow replacement. A compilation of data from several studies indicate that between 85% and 95% of these heifers will become pregnant in their first breeding season. Several thousands of heifers being raised for replacement may not deliver a calf on their first breeding season and result in economic losses to cow-calf producers. Many management procedures have been developed to maximize the reproductive potential of beef heifers. Such approaches include, but are not limited to the following: nutritional management for controlled weight gain, identification of reproductive maturity by physiological and morphological indicators, and the implementation of an estrous synchronization program. The implementation of management strategies has important positive impact(s) on the reproductive efficiency of heifers. There are limitations, however, because some heifers deemed ready to enter their first breeding season do not become pregnant. In parallel, genetic selection for fertility-related traits in beef heifers have not promoted major genetic gains on this particular area, most likely due to low heritability of female fertility traits in cattle. Technologies such as antral follicle counting, DNA genotyping and RNA profiling are being investigated as a means to aid in the identification of heifers of low fertility potential. To date, many polymorphisms have been associated with heifer fertility, but no DNA markers have been identified across herds. Antral follicle count is an indication of the ovarian reserve and is an indicator of the reproductive health of a heifer. We have been working on the identification of transcriptome profiles in heifers associated with pregnancy outcome. Our current investigations integrating protein-coding transcript abundance and artificial intelligence have identified the potential for bloodborne transcript abundance to be used as indicators of fertility potential in beef heifers. In summary, there is an ongoing pressure for reducing costs and increasing efficiency in cow-calf production systems, and new technologies can help reduce the long-standing limitations in beef heifer fertility.


2014 ◽  
Vol 126 ◽  
pp. 1-2 ◽  
Author(s):  
S. Dogliotti ◽  
D. Rodríguez ◽  
S. López-Ridaura ◽  
P. Tittonell ◽  
W.A.H. Rossing

Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 419
Author(s):  
James Christopher Bergh ◽  
William R. Morrison ◽  
Jon W. Stallrich ◽  
Brent D. Short ◽  
John P. Cullum ◽  
...  

The invasive Halyomorpha halys invades crop fields from various bordering habitats, and its feeding on crops has caused significant economic losses. Thus, H. halys is considered a perimeter-driven threat, and research on alternative management tactics against it has focused on intervention at crop edges. Woodlands adjacent to crop fields contain many hosts of H. halys and are therefore considered “riskiest” in terms of pest pressure and crop injury. However, tree fruit orchards in the Mid-Atlantic, USA, are often bordered on one or more sides by woodlands and other habitats, including other tree fruit blocks, and field crops. Monitoring H. halys using pheromone traps has most often focused on the crop–woodland interface, but the relative effects of woodlands and other habitats bordering orchards on pest pressure and crop injury have not been examined. A two-year study comparing seasonal captures of H. halys and fruit injury among different habitats bordering commercial apple and peach orchards in the Mid-Atlantic revealed that while woodland borders often posed the greatest risk, other border habitats also contributed significantly to captures and injury in numerous instances. The relevance of these findings to refining and optimizing perimeter-based monitoring and management approaches for H. halys is discussed.


Sign in / Sign up

Export Citation Format

Share Document