scholarly journals Age-Related Changes in Molecular and Whole Muscle Function: Role of Fat Content?

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 141-141
Author(s):  
Joseph Gordon III ◽  
Nicholas Remillard ◽  
Chad Straight ◽  
Rajakumar Nagarajan ◽  
Bruce Damon ◽  
...  

Abstract Decreases in muscle size and function are a general consequence of old age; the precise mechanisms of these changes remain unclear. Recent studies suggest that fat deposition in muscle may also contribute to dysfunction in older adults. Fat content was quantified in the quadriceps, and its effects on function in healthy young (21-45 y) and older (65-75 y) men and women (n=44) of comparable physical activity were compared. A subset of the young matched with the older group for muscle fat content were also examined. Peak fat-free whole muscle cross-sectional area (mCSA; cm2), volume (MV; cm3), fat content (fat fraction, FF; %), specific torque (Nm/mCSA) and peak contraction velocity (Nm∙s-1) were determined using fat-water magnetic resonance imaging and dynamometry (0-300□∙s-1). To examine potential molecular mechanisms of muscle weakness, vastus lateralis biopsies were obtained (n=31) and cross-bridge kinetics of type I and II fibers were determined. FF was higher in older adults than young (8.4±1.2% (SE), 7.6±1.4; p=0.03), while mCSA (48.9±10.4 vs. 64.2±17.3), MV (1536±532 vs. 2112±708), specific torque (2.6±0.4 vs. 3.2±0.4), and peak voluntary contraction velocity (422±20 vs. 441±23) were lower in older than young (p<0.01). Type II fiber myosin attachment rate was slower and attachment time longer in older muscle (p<0.017), providing a potential mechanism for the slowing of peak contraction velocity with age. Notably, differences at the whole muscle and molecular levels remained for the subset of young and older groups matched for FF, suggesting that fat deposition in muscle does not exacerbate age-related changes in function.

2014 ◽  
Vol 116 (12) ◽  
pp. 1582-1592 ◽  
Author(s):  
Damien M. Callahan ◽  
Nicholas G. Bedrin ◽  
Meenakumari Subramanian ◽  
James Berking ◽  
Philip A. Ades ◽  
...  

Age-related loss of skeletal muscle mass and function is implicated in the development of disease and physical disability. However, little is known about how age affects skeletal muscle structure at the cellular and ultrastructural levels or how such alterations impact function. Thus we examined skeletal muscle structure at the tissue, cellular, and myofibrillar levels in young (21–35 yr) and older (65–75 yr) male and female volunteers, matched for habitual physical activity level. Older adults had smaller whole muscle tissue cross-sectional areas (CSAs) and mass. At the cellular level, older adults had reduced CSAs in myosin heavy chain II (MHC II) fibers, with no differences in MHC I fibers. In MHC II fibers, older men tended to have fewer fibers with large CSAs, while older women showed reduced fiber size across the CSA range. Older adults showed a decrease in intermyofibrillar mitochondrial size; however, the age effect was driven primarily by women (i.e., age by sex interaction effect). Mitochondrial size was inversely and directly related to isometric tension and myosin-actin cross-bridge kinetics, respectively. Notably, there were no intermyofibrillar or subsarcolemmal mitochondrial fractional content or myofilament ultrastructural differences in the activity-matched young and older adults. Collectively, our results indicate age-related reductions in whole muscle size do not vary by sex. However, age-related structural alterations at the cellular and subcellular levels are different between the sexes and may contribute to different functional phenotypes in ways that modulate sex-specific reductions in physical capacity with age.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin Young Ko ◽  
Hayoung Kim ◽  
Joonyoung Jang ◽  
Jun Chang Lee ◽  
Ju Seok Ryu

AbstractAge-related weakness due to atrophy and fatty infiltration in oropharyngeal muscles may be related to dysphagia in older adults. However, little is known about changes in the oropharyngeal muscle activation pattern in older adults. This was a prospective and experimental study. Forty healthy participants (20 older [> 60 years] and 20 young [< 60 years] adults) were enrolled. Six channel surface electrodes were placed over the bilateral suprahyoid (SH), bilateral retrohyoid (RH), thyrohyoid (TH), and sternothyroid (StH) muscles. Electromyography signals were then recorded twice for each patient during swallowing of 2 cc of water, 5 cc of water, and 5 cc of a highly viscous fluid. Latency, duration, and peak amplitude were measured. The activation patterns were the same, in the order of SH, TH, and StH, in both groups. The muscle activation patterns were classified as type I and II; the type I pattern was characterized by a monophasic shape, and the type II comprised a pre-reflex phase and a main phase. The oropharyngeal muscles and SH muscles were found to develop a pre-reflex phase specifically with increasing volume and viscosity of the swallowed fluid. Type I showed a different response to the highly viscous fluid in the older group compared to that in the younger group. However, type II showed concordant changes in the groups. Therefore, healthy older people were found to compensate for swallowing with a pre-reflex phase of muscle activation in response to increased liquid volume and viscosity, to adjust for age-related muscle weakness.


Author(s):  
Niccolo’ Tesi ◽  
Sven J van der Lee ◽  
Marc Hulsman ◽  
Iris E Jansen ◽  
Najada Stringa ◽  
...  

Abstract Studying the genome of centenarians may give insights into the molecular mechanisms underlying extreme human longevity and the escape of age-related diseases. Here, we set out to construct polygenic risk scores (PRSs) for longevity and to investigate the functions of longevity-associated variants. Using a cohort of centenarians with maintained cognitive health (N = 343), a population-matched cohort of older adults from 5 cohorts (N = 2905), and summary statistics data from genome-wide association studies on parental longevity, we constructed a PRS including 330 variants that significantly discriminated between centenarians and older adults. This PRS was also associated with longer survival in an independent sample of younger individuals (p = .02), leading up to a 4-year difference in survival based on common genetic factors only. We show that this PRS was, in part, able to compensate for the deleterious effect of the APOE-ε4 allele. Using an integrative framework, we annotated the 330 variants included in this PRS by the genes they associate with. We find that they are enriched with genes associated with cellular differentiation, developmental processes, and cellular response to stress. Together, our results indicate that an extended human life span is, in part, the result of a constellation of variants each exerting small advantageous effects on aging-related biological mechanisms that maintain overall health and decrease the risk of age-related diseases.


BMJ Open ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. e049829
Author(s):  
Elizabeth Tyler ◽  
Fiona Lobban ◽  
Rita Long ◽  
Steven H Jones

ObjectivesAs awareness of bipolar disorder (BD) increases and the world experiences a rapid ageing of the population, the number of people living with BD in later life is expected to rise substantially. There is no current evidence base for the effectiveness of psychological interventions for older adults with BD. This focus group study explored a number of topics to inform the development and delivery of a recovery-focused therapy (RfT) for older adults with BD.DesignA qualitative focus group study.SettingThree focus groups were conducted at a university in the North West of England.ParticipantsEight people took part in the focus groups; six older adults with BD, one carer and one friend.ResultsParticipant’s responses clustered into six themes: (1) health-related and age-related changes in later life, (2) the experience of BD in later life, (3) managing and coping with BD in later life, (4) recovery in later life, (5) seeking helping in the future and (6) adapting RfT for older people.ConclusionsParticipants reported a range of health-related and age-related changes and strategies to manage their BD. Participants held mixed views about using the term ‘recovery’ in later life. Participants were in agreement that certain adaptations were needed for delivering RfT for older adults, based on their experience of living with BD in later life. The data collected as part of the focus groups have led to a number of recommendations for delivering RfT for older adults with BD in a randomised controlled trial (Clinical Trial Registration: ISRCTN13875321).


2016 ◽  
Vol 116 (4) ◽  
pp. 1848-1858 ◽  
Author(s):  
Ryan M. Peters ◽  
Monica D. McKeown ◽  
Mark G. Carpenter ◽  
J. Timothy Inglis

Age-related changes in the density, morphology, and physiology of plantar cutaneous receptors negatively impact the quality and quantity of balance-relevant information arising from the foot soles. Plantar perceptual sensitivity declines with age and may predict postural instability; however, alteration in lower limb cutaneous reflex strength may also explain greater instability in older adults and has yet to be investigated. We replicated the age-related decline in sensitivity by assessing monofilament and vibrotactile (30 and 250 Hz) detection thresholds near the first metatarsal head bilaterally in healthy young and older adults. We additionally applied continuous 30- and 250-Hz vibration to drive mechanically evoked reflex responses in the tibialis anterior muscle, measured via surface electromyography. To investigate potential relationships between plantar sensitivity, cutaneous reflex strength, and postural stability, we performed posturography in subjects during quiet standing without vision. Anteroposterior and mediolateral postural stability decreased with age, and increases in postural sway amplitude and frequency were significantly correlated with increases in plantar detection thresholds. With 30-Hz vibration, cutaneous reflexes were observed in 95% of young adults but in only 53% of older adults, and reflex gain, coherence, and cumulant density at 30 Hz were lower in older adults. Reflexes were not observed with 250-Hz vibration, suggesting this high-frequency cutaneous input is filtered out by motoneurons innervating tibialis anterior. Our findings have important implications for assessing the risk of balance impairment in older adults.


2008 ◽  
Vol 294 (6) ◽  
pp. E1160-E1168 ◽  
Author(s):  
Elena Silvestri ◽  
Assunta Lombardi ◽  
Pieter de Lange ◽  
Luigi Schiavo ◽  
Antonia Lanni ◽  
...  

Aging is associated with changes in thyroid gland physiology. Age-related changes in the contribution of peripheral tissues to thyroid hormone serum levels have yet to be systematically assessed. Here, we investigated age-related alterations in the contributions of the liver and kidney to thyroid hormone homeostasis using 6-, 12-, and 24-mo-old male Wistar rats. A significant and progressive decline in plasma thyroxine occurred with age, but triiodothyronine (T3) was decreased only at 24 mo. This was associated with an unchanged protein level of the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) in the kidney and with a decreased MCT8 level in the liver at 24 mo. Hepatic type I deiodinase (D1) protein level and activity declined progressively with age. Renal D1 levels were decreased at both 12 and 24 mo but D1 activity was decreased only at 24 mo. In the liver, no changes occurred in thyroid hormone receptor (TR) TRα1, whereas a progressive increase in TRβ1 occurred at both mRNA and total protein levels. In the kidney, both TRα1 and TRβ1 mRNA and total protein levels were unchanged between 6 and 12 mo but increased at 24 mo. Interestingly, nuclear TRβ1 levels were decreased in both liver and kidney at 12 and 24 mo, whereas nuclear TRα1 levels were unchanged. Collectively, our data show differential age-related changes among hepatic and renal MCT8 and D1 and TR expressions, and they suggest that renal D1 activity is maintained with age to compensate for the decrease in hepatic T3 production.


2016 ◽  
Vol 6 (1-2) ◽  
pp. 119-146 ◽  
Author(s):  
Henrike K. Blumenfeld ◽  
Scott R. Schroeder ◽  
Susan C. Bobb ◽  
Max R. Freeman ◽  
Viorica Marian

Abstract Recent research suggests that bilingual experience reconfigures linguistic and nonlinguistic cognitive processes. We examined the relationship between linguistic competition resolution and nonlinguistic cognitive control in younger and older adults who were either bilingual or monolingual. Participants heard words in English and identified the referent among four pictures while eye-movements were recorded. Target pictures (e.g., cab) appeared with a phonological competitor picture (e.g., cat) and two filler pictures. After each eye-tracking trial, priming probes assessed residual activation and inhibition of target and competitor words. When accounting for processing speed, results revealed that age-related changes in activation and inhibition are smaller in bilinguals than in monolinguals. Moreover, younger and older bilinguals, but not monolinguals, recruited similar inhibition mechanisms during word identification and during a nonlinguistic Stroop task. Results suggest that, during lexical access, bilinguals show more consistent competition resolution and recruitment of cognitive control across the lifespan than monolinguals.


2016 ◽  
Vol 5 (1) ◽  
pp. 30-38 ◽  
Author(s):  
Jennifer J. Heisz ◽  
Ana Kovacevic

Age-related changes in the brain can compromise cognitive function. However, in some cases, the brain is able to functionally reorganize to compensate for some of this loss. The present paper reviews the benefits of exercise on executive functions in older adults and discusses a potential mechanism through which exercise may change the way the brain processes information for better cognitive outcomes. Specifically, older adults who are more physically active demonstrate a shift toward local neural processing that is associated with better executive functions. We discuss the use of neural complexity as a sensitive measure of the neural network plasticity that is enhanced through exercise. We conclude by highlighting the future work needed to improve exercise prescriptions that help older adults maintain their cognitive and physical functions for longer into their lifespan.


Sign in / Sign up

Export Citation Format

Share Document