scholarly journals Residential cluster design and potential improvement for maximum energy performance and outdoor thermal comfort on a hot summer in Thailand

Author(s):  
Daranee Jareemit ◽  
Parintorn Canyookt

Abstract Thailand committed to achieving the Sustainable Development Goals to increase urban livability and reduce energy use in the building sector. However, the design information to achieve those challenge goals has been undefined. This study aimed to investigate and examine potential improvements for outdoor thermal comfort and energy efficiency in 136 designs of the two-type residential cluster in Pathum Thani, Thailand, via designs of building orientation, geometry and window-to-wall ratio (WWR). The daily cooling energy consumption in residential clusters was performed using eQuest under the modified weather data from the prior microclimate analysis. The energy-saving scenarios were calculated and compared to the acceptable outdoor thermal comfort hours. It is found that the row house cluster had the potential to be more sustainable than a single house. The row house clusters on orthogonal street orientation offered the highest percentage of hours in outdoor thermal comfort of 46% and energy efficiency below the new standard of Thailand. The cooling energy savings through increasing H/W with lowering WWR was up to 32%. This study’s results could provide urban planners and architects with the new design guidelines and improvement potentials to make cities more energy efficient and environmentally friendly for outdoor living in Thailand.

Author(s):  
Teresa Parejo-Navajas

AbstractThe behavior of occupants in buildings has an enormous impact on their energy consumption. Despite the efforts to improve the energy efficiency in buildings, there are still many barriers that need to be overcome. Behavior change measures -to improve the energy performance of buildings- are focused on both, the design and the use and operation of buildings. If we are really committed to achieving the sustainable development objective to improve our society’s well-being, special attention should be put into energy use behavior as it has been proven to be an effective way for improvement. ResumoO comportamento dos ocupantes em edifícios tem um enorme impacto no seu consumo de energia. Apesar dos esforços para melhorar a eficiência energética nos edifícios, ainda há muitas barreiras que precisam ser superadas. Medidas de mudança de condutas - para melhorar o desempenho energético dos edifícios - são focadas tanto no design como na utilização e operação de edifícios. Se estamos realmente empenhados em alcançar o objetivo de desenvolvimento sustentável para melhorar o bem-estar da nossa sociedade, uma atenção particular deve ser proporcionada em relação as condutas que influem no uso cotidiano de energia, uma vez que se provou ser um meio eficaz de progresso.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Naim Jabbour

Data shows residential energy consumption constituting a significant portion of the overall energy end use in the European Union (EU), ranging between 15% and 30%. Furthermore, the EU’s dependency on foreign fossil fuel-based energy imports has been steadily increasing since 1993, constituting approximately 60% of its primary energy. This paper provides an analytical re-view of diverse residential building/energy policies in targeted EU countries, to shed insight on the impact of such policies and measures on energy use and efficiency trends. Accordingly, the adoption of robust residential green and energy efficient building policies in the EU has increased in the past decade. Moreover, data from EU energy efficiency and consumption databases attributes 44% of total energy savings since 2000 to energy upgrades and improvements within the residential sector. Consequently, many EU countries and organizations are continuously evaluating residential building energy consumption patterns to increase the sec-tor’s overall energy performance. To that end, energy efficiency gains in EU households were measured at 1% in 2000 compared to 27.8% in 2016, a 2600% increase. Accordingly, 36 policies have been implemented successfully since 1991 across the EU targeting improvements in residential energy efficiency and reductions in energy use. Moreover, the adoption of National Energy Efficiency Actions Plans (NEEACP) across the EU have been a major driver of energy savings and energy efficiency. Most energy efficiency plans have followed a holistic multi-dimensional approach targeting the following areas, legislative actions, financial incentives, fiscal tax exemptions, and public education and awareness programs and campaigns. These measures and policy instruments have cumulatively generated significant energy savings and measurable improvements in energy performance across the EU since their inception. As a result, EU residential energy consumption trends show a consistent decrease over the past decade. The purpose of this analysis is to explore, examine, and compare the various green building and energy-related policies in the EU, highlighting some of the more robust and progressive aspects of such policies. The paper will also analyze the multiple policies and guidelines across targeted European nations. Lastly, the study will assess the status of green residential building policies in Lebanon, drawing from the comprehensive European measures, in order to recommend a comprehensive set of guidelines to advance energy policies and building practices in the country. Keywords: Building Policies; Residential Energy Patterns; Residential Energy Consumption; Energy Savings


Author(s):  
Gregory Raffio ◽  
Ovelio Isambert ◽  
George Mertz ◽  
Charlie Schreier ◽  
Kelly Kissock

This paper describes a four-step method to analyze the utility bills and weather data from multiple residences to target buildings for specific energy conservation retrofits. The method is also useful for focusing energy assessments on the most promising opportunities. The first step of the method is to create a three-parameter changepoint regression model of energy use versus weather for each building and fuel type. The three model parameters represent weather independent energy use, the building heating or cooling coefficient and the building balance-point temperature. The second step is to drive the models using typical TMY2 weather data to determine Normalized Annual Consumption (NAC) for each fuel type. The third step is to create a sliding NAC with each set of 12 sequential months of utility data. The final step is to benchmark the NACs and coefficients of multiple buildings to identify average, best and worst energy performers, and how the performance of each building has changed over time. The method identifies billing errors, normalizes energy use for changing weather, prioritizes sites for specific energy-efficiency retrofits and tracks weather-normalized changes in energy use. The principle differences between this method and previously defined ones are that this method seeks to use inverse modeling proactively to identify energy saving opportunities rather than retroactively to measure energy savings, it tracks changes in building performance using sliding analysis, and it uses comparisons between multiple buildings to extract additional information. This paper describes the method, then demonstrates the method through a case study of about 300 low-income residences. After applying the method, targeted buildings were visited to determine the accuracy of the method at identifying energy efficiency opportunities. The case study shows that over 80% of the targeted buildings presented at least one of the expected problems from each type of retrofit.


2019 ◽  
Vol 112 ◽  
pp. 04007
Author(s):  
Mircea Scripcariu ◽  
Ioan Sevastian Bitir-Istrate ◽  
Cristian Gheorghiu ◽  
Aida Maria Neniu

Energy audits are used world-wide for developing energy efficiency projects. Industrial consumers have complex energy supply, generation and distribution networks and a variety of energy use installations. Romanian industrial companies became more interested in the last years in implementing Energy Management Systems in accordance with ISO 50001 standard. This paper presents a comparison of using the current way of developing energy audits and the concepts provided by the ISO group of standards, by quantifying the environmental impact reduction generated by each methodology. Authors pointed out that current legislation does not fully match the rigors of the ISO 50001 group of standards when evaluating the Energy Baseline (EB), the Energy Performance Indicators (EPI) or the Energy Performance Improvement Actions (EPIA), thus leading to a lower global energy efficiency improvement in the hypothesis of implementing all the recommended EPIAs [1]. Identifying and developing energy efficiency measures following the recommendations of the energy management and energy savings group of standards may be more consistent and less risky for the industrial company, which in turn can lead to an overall improvement of the Carbon Footprint [2].


2017 ◽  
Vol 21 (6 Part B) ◽  
pp. 2945-2955
Author(s):  
Branko Slavkovic

This study aims to check the various possibilities of application of the double layer of the fa?ade in the rehabilitation of industrial facilities in Serbia, with the aim of improving the energy performance of buildings and energy savings for heating and cooling. Industrial facility of Raska textile factory in city of Novi Pazar, Serbia, was taken as a model for this study. This facility needs to be adapted into the building for administrative purposes. Using the existing structural system of the building, the existing shell and infrastructure of the building, the scheme of future business functional areas of the building have been proposed, which defines the thermal zones in the building. The paper examined various modalities of double layer on the east and west fa?ades of the building, adding a curtain wall with single glass as the outer membrane. The results of the energy characteristics of the proposed rehabilitation of the building were obtained using a computer simulation program EnergyPlus and software DesignBuilder, based on climatic parameters of Serbia and the parameters of necessary thermal comfort defined by the Regulations on energy efficiency in buildings and in accordance with standard EN 15251. The criteria on the basis of which the valorization of improving the energy efficiency of the building would be performed are the thermal comfort, the required amount of energy for heating and cooling the facility and reduction of CO2 emission.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3311
Author(s):  
Víctor Pérez-Andreu ◽  
Carolina Aparicio-Fernández ◽  
José-Luis Vivancos ◽  
Javier Cárcel-Carrasco

The number of buildings renovated following the introduction of European energy-efficiency policy represents a small number of buildings in Spain. So, the main Spanish building stock needs an urgent energy renovation. Using passive strategies is essential, and thermal characterization and predictive tests of the energy-efficiency improvements achieving acceptable levels of comfort for their users are urgently necessary. This study analyzes the energy performance and thermal comfort of the users in a typical Mediterranean dwelling house. A transient simulation has been used to acquire the scope of Spanish standards for its energy rehabilitation, taking into account standard comfort conditions. The work is based on thermal monitoring of the building and a numerical validated model developed in TRNSYS. Energy demands for different models have been calculated considering different passive constructive measures combined with real wind site conditions and the behavior of users related to natural ventilation. This methodology has given us the necessary information to decide the best solution in relation to energy demand and facility of implementation. The thermal comfort for different models is not directly related to energy demand and has allowed checking when and where the measures need to be done.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 749
Author(s):  
John H. Scofield ◽  
Susannah Brodnitz ◽  
Jakob Cornell ◽  
Tian Liang ◽  
Thomas Scofield

In this work, we present results from the largest study of measured, whole-building energy performance for commercial LEED-certified buildings, using 2016 energy use data that were obtained for 4417 commercial office buildings (114 million m2) from municipal energy benchmarking disclosures for 10 major U.S. cities. The properties included 551 buildings (31 million m2) that we identified as LEED-certified. Annual energy use and greenhouse gas (GHG) emission were compared between LEED and non-LEED offices on a city-by-city basis and in aggregate. In aggregate, LEED offices demonstrated 11% site energy savings but only 7% savings in source energy and GHG emission. LEED offices saved 26% in non-electric energy but demonstrated no significant savings in electric energy. LEED savings in GHG and source energy increased to 10% when compared with newer, non-LEED offices. We also compared the measured energy savings for individual buildings with their projected savings, as determined by LEED points awarded for energy optimization. This analysis uncovered minimal correlation, i.e., an R2 < 1% for New Construction (NC) and Core and Shell (CS), and 8% for Existing Euildings (EB). The total measured site energy savings for LEED-NC and LEED-CS was 11% lower than projected while the total measured source energy savings for LEED-EB was 81% lower than projected. Only LEED offices certified at the gold level demonstrated statistically significant savings in source energy and greenhouse gas emissions as compared with non-LEED offices.


2020 ◽  
Vol 13 (1) ◽  
pp. 235
Author(s):  
Fernando Martín-Consuegra ◽  
Fernando de Frutos ◽  
Ignacio Oteiza ◽  
Carmen Alonso ◽  
Borja Frutos

This study quantified the improvement in energy efficiency following passive renovation of the thermal envelope in highly inefficient residential complexes on the outskirts of the city of Madrid. A case study was conducted of a single-family terrace housing, representative of the smallest size subsidized dwellings built in Spain for workers in the nineteen fifties and sixties. Two units of similar characteristics, one in its original state and the other renovated, were analyzed in detail against their urban setting with an experimental method proposed hereunder for simplified, minimal monitoring. The dwellings were compared on the grounds of indoor environment quality parameters recorded over a period covering both winter and summer months. That information was supplemented with an analysis of the energy consumption metered. The result was a low-cost, reasonably accurate measure of the improvements gained in the renovated unit. The monitoring output data were entered in a theoretical energy efficiency model for the entire neighborhood to obtain an estimate of the potential for energy savings if the entire urban complex were renovated.


2021 ◽  
Vol 11 (14) ◽  
pp. 6254
Author(s):  
Elena G. Dascalaki ◽  
Constantinos A. Balaras

In an effort to reduce the operational cost of their dwellings, occupants may even have to sacrifice their indoor thermal comfort conditions. Following the economic recession in Greece over recent years, homeowners have been forced to adapt their practices by shortening heating hours, lowering the indoor thermostat settings, isolating spaces that are not heated or even turning off their central heating system and using alternative local heating systems. This paper presents the results from over 100 occupant surveys using questionnaires and walk-through energy audits in Hellenic households that documented how occupants operated the heating systems in their dwellings and the resulting indoor thermal comfort conditions and actual energy use. The results indicate that the perceived winter thermal comfort conditions were satisfactory in only half of the dwellings, since the actual operating space heating periods averaged only 5 h (compared with the assumed 18 h in standard conditions), while less than half heated their entire dwellings and only a fifth maintained an indoor setpoint temperature of 20 °C, corresponding to standard comfort conditions. Mainstream energy conservation measures include system maintenance, switching to more efficient systems, reducing heat losses and installing controls. This information is then used to derive empirical adaptation factors for bridging the gap between the calculated and actual energy use, making more realistic estimates of the expected energy savings following building renovations, setting prudent targets for energy efficiency and developing effective plans toward a decarbonized building stock.


2014 ◽  
Vol 3 (2) ◽  
pp. 132-152 ◽  
Author(s):  
Karin Regina de Casas Castro Marins

Purpose – Energy use in urban areas has turned a subject of local and worldwide interest over the last few years, especially emphasized by the correlated greenhouse gases emissions. The purpose of this paper is to analyse the overall energy efficiency potential and emissions resulting from integrated solutions in urban energy planning, in the scale of districts and neighbourhoods in Brazil. Design/methodology/approach – The approach is based on the description and the application of a method to analyse energy performance of urban areas and support their planning. It is a quantitative bottom-up method and involves urban morphology, urban mobility, buildings and energy supply systems. Procedures are applied to the case study of Agua Branca urban development area, located in Sao Paulo, Brazil. Findings – In the case of Agua Branca area, energy efficiency measures in buildings have shown to be very important mostly for the buildings economies themselves. For the area as a whole, strategies in promoting public transport are more effective in terms of energy efficiency and also to decrease pollutant emissions. Originality/value – Literature review has shown there is a lack of approaches and procedures able to support urban energy planning at a community scale. The bottom-up method presented in this paper integrates a plenty of disaggregated and multisectoral parameters at the same stage in urban planning and shows that is possible to identify the most promising actions by building overall performance indexes.


Sign in / Sign up

Export Citation Format

Share Document