PSX-A-11 Late-Breaking: Effects of phytogenic supplementation on growth performance and intestinal barrier function in nursery pigs challenged with E. coli

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 372-374
Author(s):  
Rachita Maniyar ◽  
Bonjin Koo ◽  
Debora Holanda ◽  
Chengbo Yang ◽  
Karmin O ◽  
...  

Abstract The objective of this study was to investigate the health-promoting effects of red osier dogwood (ROD) extract as an alternative to antibiotics in weaned piglets challenged with enterotoxigenic Escherichia coli (ETEC). Twenty-eight weaned piglets (9.15±0.95 kg BW) confirmed to genetically susceptible to ETEC were individually assigned to one of the four dietary treatments in a completely randomized design. Experimental diets were, negative control (NC), corn-wheat soybean meal diet with no additives; positive control (PC), NC plus antibiotics; ROD1, NC plus 0.1% ROD extract; ROD2, NC plus 0.2% ROD extract. Piglets were orally challenged on d 7 with ETEC F4. Feed disappearance, body weight, fecal score, and rectal temperature were recorded. On d 14, piglets were euthanized to collect intestinal tissue samples for histomorphology and Ussing chamber analysis. Data were analyzed using the MIXED procedure of SAS using individual piglet as the experimental unit. There were no differences (P > 0.10) in histomorphology and intestinal permeability. Piglets fed the NC diet tended (P < 0.10) to have higher average daily gain, post-inoculation than those fed ROD1 or ROD2. Fecal score of piglets fed the PC diet tended to (P < 0.10) or was significantly lower (P < 0.05) than for piglets fed ROD1 or ROD2 on 0 and 2 days post-inoculation (dpi), respectively. On 0 dpi, piglets fed the ROD1 diet had significantly higher (P < 0.05) body temperature than those fed PC or ROD2. In conclusion, ROD extract supplementation might have some health-promoting effects on ETEC challenged piglets but could not improve gut health to the same extent as antibiotics.

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 369-370
Author(s):  
Xiaoxiao Zhang ◽  
Bonjin Koo ◽  
Debora Holanda ◽  
Martin Nyachoti ◽  
Jinyoung Lee

Abstract Enzymatically derived non-starch polysaccharide hydrolysis products (HP) may modulate enteric health outcomes in piglets. Thus, responses of weaned piglets to an oral challenge with enterotoxigenic Escherichia coli F4 (ETEC) when fed diets containing canola meal (CM) HP were investigated. The HP were obtained by incubating CM with a multi-carbohydrase (MC) blend. Thirty-five weaned piglets (8.08 ± 0.34 Kg BW) were individually assigned in a completely randomized design to 1 of 5 treatments: UCC (unchallenged control), NC (negative control challenged with ETEC), PC (NC + 0.1% AGP), HP1 (NC + 0.25% HP), HP2 (NC + 0.5% HP). After a seven-day adaptation period, piglets in the UCC group received 5 ml of PBS, whereas those in all other groups were orally challenged with 5 ml (5 × 106 CFU/mL) of ETEC F4. On d 14 all piglets were euthanized for tissue sampling. Data were analyzed using the PROC MIXED procedure of SAS 9.4, with the individual pig as the experimental unit. During the post-challenge period, piglets fed NC diet had lower (P < 0.05) G: F than those fed the PC, whereas the G: F was higher (P < 0.05) for piglets fed the HP-containing diets than that of piglets fed the NC diet. Piglets fed diets containing HP showed lower (P < 0.05) jejunum pH and fecal scores than piglets fed the NC diet. For gene expressions, the HP groups showed a greater level of toll like receptor 2 (TLR2) compared with NC group (P < 0.05). For the HP groups, HP1 had a higher (P < 0.05) level of TLR2 than HP2 treatment. Feeding HP resulted in lower relative abundance of Bifidobacterium in the colon of piglets compared with feeding with NC (P < 0.05). In conclusion, piglets fed diets with CM HP exhibited less severe ETEC-enteritis and had similar effects with AGP.


Author(s):  
Wen-Chao Liu ◽  
Yan Guo ◽  
Zhi-Hui Zhao ◽  
Rajesh Jha ◽  
Balamuralikrishnan Balasubramanian

This study aimed to determine the efficacy of dietary algae-derived polysaccharides (ADPs) from Enteromorpha on growth performance, intestinal morphology, intestinal permeability, and antioxidant capacity in serum, liver, and intestinal mucosa of broilers. Three hundred and ninety six day-old male chicks were randomly assigned to six dietary treatments containing 0 (Control), 1,000, 2,500, 4,000, 5,500, and 7,000 mg ADP/kg basal diet in a 35 day feeding trial. During day 1–21, compared with the control group, dietary 1,000–7,000 mg/kg ADP supplementation improved the average daily gain (ADG) and feed conversion ratio (p < 0.05). Overall (day 1–35), dietary inclusion of 1,000 mg/kg ADP increased the final body weight and ADG (p < 0.05). Besides, on day 21, dietary 2,500 mg/kg ADP supplementation increased the serum catalase (CAT) and liver total superoxide dismutase (T-SOD) activities (p < 0.05), whereas dietary 1,000–5,500 mg/kg ADP supplementation decreased malondialdehyde (MDA) contents in serum and liver (p < 0.05). On day 35, supplementation of 1,000 mg/kg ADP increased the serum glutathione peroxidase and CAT activities and liver T-SOD activities (p < 0.05). It decreased the MDA level of serum and liver (p < 0.05). Also, dietary 2,500 mg/kg ADP increased the villus height of jejunum and ileum on day 21 (p < 0.05), and dietary 4,000 mg/kg ADP increased the villus height of duodenum and ileum on day 35 (p < 0.05). On day 21, dietary 4,000 mg/kg ADP increased the CAT activities of the duodenum and T-SOD activities of jejunum and ileum and decreased the MDA contents in the duodenum, jejunum, and ileum (p < 0.05). On day 35, dietary inclusion of 1,000–7,000 mg/kg ADP reduced MDA contents of duodenum and jejunum (p < 0.05). Furthermore, dietary inclusion of ADP at 1,000–7,000 mg/kg decreased serum DAO activities at day 21 and day 35 (p < 0.05), and the serum D-lactic acid concentration was reduced by dietary supplementation of 1,000, 2,500, and 7,000 mg/kg ADP on day 21. In conclusion, dietary ADP exerted beneficial effects on growth performance, antioxidant capacity, and gut health in broilers; based on the studied parameters, the appropriate recommended dose is 1,000–4,000 mg/kg. These findings provided new insights into the potential application of ADP as natural growth promoters in broilers.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xinxin Jin ◽  
Boyu Yuan ◽  
Mingming Liu ◽  
Mingqiang Zhu ◽  
Xue Zhang ◽  
...  

A high-quality protein substitute, Hermetia illucens (black soldier fly) larvae powder, is rich in protein and often used in animal feed. This study aimed to investigate the feasibility and optimal ratio of replacing fish meal with H. illucens larvae in weaned piglets and to demonstrate the effects on piglets' growth performance, intestinal microflora and immune performance. Forty-eight female weaned piglets were randomly classified into three groups. Each group consisted of eight pens (replicates), with two piglets per pen. Three groups containing different proportions of H. illucens larvae (0, 4, and 8%) were referred to as C, HI4, and HI8. We first designed a 28-day feeding experiment to detect growth performance; after that, the piglets were induced with oral gavage of enterotoxigenic Escherichia coli K88 (ETEC K88) and recording diarrhea on day 29 of the experiment. Samples were taken on the 32nd day to detect the effect of H. illucens larvae on the immune performance of the weaned piglets. H. illucens larvae replacement did not cause any obvious change in the growth performance nether in HI4 nor in HI8 of weaned piglets with 28 d feeding stage. H. illucens larvae could improve the intestinal health of weaned piglets by increasing the content of Lactobacillus and reducing the content of Streptococcus. Compared with C+K88 group, the diarrhea rate was attenuated for the H. illucens supplemented group. The integrity of ileum villi in HI4+K88 and HI8+K88 groups was better than that in C+K88 group, and the villi in C+K88 group were severely damaged. The expression of IL-10, Occludin and Claudin-3 in the intestinal mucosa of the HI4+K88 group and HI8+K88 group were significantly increased (P < 0.05), and the expression of TNF-α was significantly decreased (P < 0.05) compared with the C+K88 group. The results of immunoblotting also validated that the same ETEC K88 treatment of weaned piglets enhanced the expression of tight junction protein in the intestinal mucosa of the H. illucens addition group. ETEC-induced diarrhea will be reduced by the diet of weaned piglets containing H. illucens larvae, ameliorating the immune performance of piglets. Our results indicates that the optimal dosage of H. illucens replacement in weaned piglets is 4%.


2021 ◽  
Vol 9 (3) ◽  
pp. 572
Author(s):  
Sandrine Dufourny ◽  
Nadine Antoine ◽  
Elena Pitchugina ◽  
Véronique Delcenserie ◽  
Stéphane Godbout ◽  
...  

Apple pomace (AP) is known to be rich in biomolecules beneficial for health and it may advantageously be used to overcome the critical step of piglets’ weaning. The study aimed to determine the effect of two levels of incorporation of AP on the performance, intestinal morphology, and microbiota of weaned piglets and investigate this feed ingredient as a weaning strategy. An experiment was performed with 42 piglets from weaning (28 days old) over a five-week period, including three iso-energetic and iso-nitrogenous diets (0%, 2%, and 4% dried AP diets) with seven pen-repetitions per diet (two pigs per pen). AP diets were beneficial for the average daily gain calculated on week 3 (p = 0.038) and some parameters of the intestinal architecture on the 35 post-weaning day. The 4% AP diet was beneficial for the feed conversion ratio (p = 0.002) and the energetic feed efficiency (p = 0.004) on the 35 post-weaning day. AP tended to influence the consistency of feces (softer to liquid, p = 0.096) and increased the counts of excreted pathogens (p = 0.072). Four percent AP influenced the richness of the microbiota and the bacteria profile as observed for the phylum Bacteroidetes or the class Clostridia. The 4% AP diet appeared as an interesting weaning strategy that should be evaluated in a large cohort.


2021 ◽  
Vol 9 (7) ◽  
pp. 1459
Author(s):  
Mohamed Rhouma ◽  
Charlotte Braley ◽  
William Thériault ◽  
Alexandre Thibodeau ◽  
Sylvain Quessy ◽  
...  

The intestinal microbiota plays several important roles in pig health and growth. The aim of the current study was to characterize the changes in the fecal microbiota diversity and composition of weaned piglets following an oral challenge with an ETEC: F4 strain and/or a treatment with colistin sulfate (CS). Twenty-eight piglets were used in this experiment and were divided into four groups: challenged untreated, challenged treated, unchallenged treated, and unchallenged untreated. Rectal swab samples were collected at five sampling times throughout the study. Total genomic DNA was used to assess the fecal microbiota diversity and composition using the V4 region of the 16S rRNA gene. The relative abundance, the composition, and the community structure of piglet fecal microbiota was highly affected by the ETEC: F4 challenge throughout the experiment, while the oral treatment with CS, a narrow spectrum antibiotic, resulted in a significant decrease of E. coli/Shigella populations during the treatment period only. This study was the first to identify some gut microbiota subgroups (e.g., Streptococcus, Lachnospiraceae) that are associated with healthy piglets as compared to ETEC: F4 challenged animals. These key findings might contribute to the development of alternative strategies to reduce the use of antimicrobials in the control of post-weaning diarrhea in pigs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yueqin Qiu ◽  
Jun Yang ◽  
Li Wang ◽  
Xuefen Yang ◽  
Kaiguo Gao ◽  
...  

Abstract Background Deoxynivalenol (DON) is a widespread mycotoxin that induces intestinal inflammation and oxidative stress in humans and animals. Resveratrol (RES) effectively exerts anti-inflammatory and antioxidant effects. However, the protective effects of RES on alleviating DON toxicity in piglets and the underlying mechanism remain unclear. Therefore, this study aimed to investigate the effect of RES on growth performance, gut health and the gut microbiota in DON-challenged piglets. A total of 64 weaned piglets [Duroc × (Landrace × Yorkshire), 21-d-old, 6.97 ± 0.10 kg body weight (BW)] were randomly allocated to 4 treatment groups (8 replicate pens per treatment, each pen containing 2 males; n = 16 per treatment) for 28 d. The piglets were fed a control diet (CON) or the CON diet supplemented with 300 mg RES/kg diet (RES group), 3.8 mg DON/kg diet (DON) or both (DON+RES) in a 2 × 2 factorial design. Results DON-challenged piglets fed the RES-supplemented diet had significantly decreased D-lactate concentrations and tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) mRNA and protein expression, and increased zonula occludens-1 (ZO-1) mRNA and protein expression compared with those of DON-challenged piglets fed the unsupplemented diet (P < 0.05). Compared with unsupplemented DON-challenged piglets, infected piglets fed a diet with RES showed significantly decreased malondialdehyde (MDA) levelsand increased mRNA expression of antioxidant enzymes and antioxidant genes (i.e., GCLC, GCLM, HO-1, SOD1 and NQO-1) and glutamate-cysteine-ligase modulatory subunit (GCLM) protein expression (P < 0.05). Moreover, RES supplementation significantly abrogated the increase in the proportion of TUNEL-positive cells and the protein expression of caspase3 in DON-challenged piglets (P < 0.05). Finally, RES supplementation significantly increased the abundance of Roseburia and butyrate concentrations, while decreasing the abundances of Bacteroides and unidentified-Enterobacteriaceae in DON-challenged piglets compared with DON-challenged piglets alone (P < 0.05). Conclusions RES supplementation improved gut health in DON-challenged piglets by strengthening intestinal barrier function, alleviating intestinal inflammation and oxidative damage, and positively modulating the gut microbiota. The protective effects of RES on gut health may be linked to increased Roseburia and butyrate concentrations, and decreased levels of Bacteroides and unidentified-Enterobacteriaceae.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 527
Author(s):  
Jie Fu ◽  
Tenghao Wang ◽  
Xiao Xiao ◽  
Yuanzhi Cheng ◽  
Fengqin Wang ◽  
...  

This study investigated the effects of dietary C. butyricum ZJU-F1 on the apparent digestibility of nutrients, intestinal barrier function, immune response, and microflora of weaned piglets, with the aim of providing a theoretical basis for the application of Clostridium butyricum as an alternative to antibiotics in weaned piglets. A total of 120 weanling piglets were randomly divided into four treatment groups, in which piglets were fed a basal diet supplemented with antibiotics (CON), Bacillus licheniformis (BL), Clostridium butyricum ZJU-F1 (CB), or Clostridium butyricum and Bacillus licheniformis (CB-BL), respectively. The results showed that CB and CB-BL treatment increased the intestinal digestibility of nutrients, decreased intestinal permeability, and increased intestinal tight junction protein and mucin expression, thus maintaining the integrity of the intestinal epithelial barrier. CB and CB-BL, as exogenous probiotics, were also found to stimulate the immune response of weaned piglets and improve the expression of antimicrobial peptides in the ileum. In addition, dietary CB and CB-BL increased the proportion of Lactobacillus. The levels of butyric acid, propionic acid, acetic acid, and total acid were significantly increased in the ceca of piglets fed CB and CB-BL. Furthermore, we validated the effects of C. butyricum ZJU-F1 on the intestinal barrier function and immune response in vitro and found C. butyricum ZJU-F1 improved intestinal function and enhanced the TLR-2-MyD88-NF-κB signaling.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 402
Author(s):  
Anne M.S. Huting ◽  
Anouschka Middelkoop ◽  
Xiaonan Guan ◽  
Francesc Molist

This is a comprehensive review on the use of nutritional strategies to shape the functioning of the gastro-intestinal tract in suckling and weaned piglets. The progressive development of a piglet’s gut and the associated microbiota and immune system offers a unique window of opportunity for supporting gut health through dietary modulation. This is particularly relevant for large litters, for which sow colostrum and milk are insufficient. The authors have therefore proposed the use of supplemental milk and creep feed with a dual purpose. In addition to providing nutrients to piglets, supplemental milk can also serve as a gut modulator in early life by incorporating functional ingredients with potential long-term benefits. To prepare piglets for weaning, it is important to stimulate the intake of solid feed before weaning, in addition to stimulating the number of piglets eating. The use of functional ingredients in creep feed and a transition diet around the time of weaning helps to habituate piglets to solid feed in general, while also preparing the gut for the digestion and fermentation of specific ingredients. In the first days after weaning (i.e., the acute phase), it is important to maintain high levels of feed intake and focus on nutritional strategies that support good gastric (barrier) function and that avoid overloading the impaired digestion and fermentation capacity of the piglets. In the subsequent maturation phase, the ratio of lysine to energy can be increased gradually in order to stimulate piglet growth. This is because the digestive and fermentation capacity of the piglets is more mature at this stage, thus allowing the inclusion of more fermentable fibres. Taken together, the nutritional strategies addressed in this review provide a structured approach to preparing piglets for success during weaning and the period that follows. The implementation of this approach and the insights to be developed through future research can help to achieve some of the most important goals in pig production: reducing piglet mortality, morbidity and antimicrobial use.


Sign in / Sign up

Export Citation Format

Share Document