scholarly journals T cell metabolism in obesity and beyond: comments on ‘DsbA-L deficiency in T cells promotes diet-induced thermogenesis through suppressing IFN-γ production’

Author(s):  
Haiyan Zhou ◽  
Feng Liu
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haiyan Zhou ◽  
Xinyi Peng ◽  
Jie Hu ◽  
Liwen Wang ◽  
Hairong Luo ◽  
...  

AbstractAdipose tissue-resident T cells have been recognized as a critical regulator of thermogenesis and energy expenditure, yet the underlying mechanisms remain unclear. Here, we show that high-fat diet (HFD) feeding greatly suppresses the expression of disulfide-bond A oxidoreductase-like protein (DsbA-L), a mitochondria-localized chaperone protein, in adipose-resident T cells, which correlates with reduced T cell mitochondrial function. T cell-specific knockout of DsbA-L enhances diet-induced thermogenesis in brown adipose tissue (BAT) and protects mice from HFD-induced obesity, hepatosteatosis, and insulin resistance. Mechanistically, DsbA-L deficiency in T cells reduces IFN-γ production and activates protein kinase A by reducing phosphodiesterase-4D expression, leading to increased BAT thermogenesis. Taken together, our study uncovers a mechanism by which T cells communicate with brown adipocytes to regulate BAT thermogenesis and whole-body energy homeostasis. Our findings highlight a therapeutic potential of targeting T cells for the treatment of over nutrition-induced obesity and its associated metabolic diseases.


2019 ◽  
Vol 12 (599) ◽  
pp. eaav3334 ◽  
Author(s):  
Sarah Dimeloe ◽  
Patrick Gubser ◽  
Jordan Loeliger ◽  
Corina Frick ◽  
Leyla Develioglu ◽  
...  

Transforming growth factor–β (TGF-β) is produced by tumors, and increased amounts of this cytokine in the tumor microenvironment and serum are associated with poor patient survival. TGF-β–mediated suppression of antitumor T cell responses contributes to tumor growth and survival. However, TGF-β also has tumor-suppressive activity; thus, dissecting cell type–specific molecular effects may inform therapeutic strategies targeting this cytokine. Here, using human peripheral and tumor-associated lymphocytes, we investigated how tumor-derived TGF-β suppresses a key antitumor function of CD4+ T cells, interferon-γ (IFN-γ) production. Suppression required the expression and phosphorylation of Smad proteins in the TGF-β signaling pathway, but not their nuclear translocation, and depended on oxygen availability, suggesting a metabolic basis for these effects. Smad proteins were detected in the mitochondria of CD4+ T cells, where they were phosphorylated upon treatment with TGF-β. Phosphorylated Smad proteins were also detected in the mitochondria of isolated tumor-associated lymphocytes. TGF-β substantially impaired the ATP-coupled respiration of CD4+ T cells and specifically inhibited mitochondrial complex V (ATP synthase) activity. Last, inhibition of ATP synthase alone was sufficient to impair IFN-γ production by CD4+ T cells. These results, which have implications for human antitumor immunity, suggest that TGF-β targets T cell metabolism directly, thus diminishing T cell function through metabolic paralysis.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1517-1517
Author(s):  
Elitsa Ananieva ◽  
Ashley Toress ◽  
Jonathan Powell ◽  
Susan Hutson ◽  
Michael Boyer

Abstract Objectives T cells use the amino acid leucine to respond to their increased biosynthetic demands during activation. However, once inside T cells, leucine is subjected to degradation, which is initiated by the mitochondrial branched-chain aminotransferase (BCATm) that catalyzes the reversible transamination of leucine. We hypothesized that if BCATm is absent from T cells, this would provide more intracellular leucine to stimulate T cell metabolism. Methods To explore the dependence of T cells on BCATm function, we isolated CD4+ T cells from spleens of wild type (WT) and BCATm global knockout (KO) mice, and after cell activation with anti-CD3 and anti-CD28 for 24 h, we measured leucine transamination, glycolysis, mitochondrial respiration and ATP synthesis, the activity of the mammalian target of rapamycin (mTOR) pathway, and the release of IFN-γ. Results The global deletion of BCATm resulted in a 1.8-fold reduction in leucine transamination and a 1.2-fold increase in the intracellular leucine concentrations in activated CD4+ T cells from BCATmKO mice. These T cells demonstrated 4.0– and 5.0-fold increases in glycolysis and  glycolytic capacity, along with 1.8– and 2-0-fold increases in the maximal respiration and spare respiratory capacity when compared to WT T cells after 24 h of activation. In addition, mTOR signaling was more active in BCATmKO T cells and their IFN-γ release was increased by 2.1-fold relative to WT T cells. Conclusions The results suggested that leucine catabolism at the BCATm step negatively affects T cell metabolism by limiting glycolytic intermediates for biosynthetic needs and mitochondrial respiration for energy. Thus, leucine catabolism is regarded as a metabolic checkpoint of T cells that may prove useful for therapeutic purposes. Funding Sources Des Moines University, (IOER-112-3705 to EAS), the National Institute of Health (DK 34,738 to SMH).


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Kaitlin Kiernan ◽  
Nancie J MacIver

Abstract Obesity leads to altered immunity characterized by increased risk of autoimmunity, poor response to infection, and impaired vaccine response. T cells play an important role in this obesity-associated immune response; however, the mechanisms by which T cells are altered in obesity remain unknown. Our goal is to identify nutritionally regulated hormones and cytokines that link whole body nutrition and immunity, and to understand the mechanisms by which such factors can alter T cell response in obesity. To that end, we have identified the hormones insulin and insulin-like growth factor-1 (IGF-1) as potential links between nutritional status and T cell metabolism and function. Insulin is secreted from pancreatic beta cells in response to increasing blood glucose levels, and circulating insulin levels are elevated in obesity due to insulin resistance in metabolic tissues. IGF-1 levels are influenced by protein intake and nutrition status, and free (bioactive) levels of IGF-1 are elevated in obesity. To study the role of insulin and IGF-1 on T cell function and metabolism, we treated activated CD4 T cells with physiologic levels of insulin or IGF-1 in vitro for 24 hours. Treatment of CD4 T cells with insulin or IGF-1 increased glucose uptake, glycolytic metabolism, and mitochondrial metabolism while altering inflammatory cytokine production. In particular, both insulin and IGF-1 decreased IFN-γ production, whereas IGF-1 specifically increased IL-17 production from both bulk activated CD4 T cells and T cells skewed toward a T helper 17 (Th17) phenotype. Using a T cell-specific insulin receptor (IR) conditional knockout mouse, we found that loss of IR signaling decreased glucose uptake and mitochondrial metabolism and increased IFN-γ production by activated T cells. Moreover, IR appears to be required for both insulin and IGF-1 effects on T cells. Lastly, we investigated the CD4 T cell subset-specific expression of both IR and IGF-1 receptor (IGF-1R). We found that each CD4 T cell subset had its own unique expression of both IR and IGF-1R; however Th17 cells had a striking increase in IGF-1R expression compared to the other T cell subsets, indicating a specific role for IGF-1 in promoting inflammation. These findings underscore the ability of the nutritionally-regulated hormones insulin and IGF-1 to modulate CD4 T cell metabolism and function and thereby alter T cell immunity, which has direct clinical relevance in both normal physiology and in obesity.


Immuno ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 119-131
Author(s):  
Jana Palmowski ◽  
Kristina Gebhardt ◽  
Thomas Reichel ◽  
Torsten Frech ◽  
Robert Ringseis ◽  
...  

CD4+ T cells are sensitive to peripheral changes of cytokine levels and metabolic substrates such as glucose and lactate. This study aimed to analyze whether factors released after exercise alter parameters of human T cell metabolism, specifically glycolysis and oxidative phosphorylation. We used primary human CD4+ T cells activated in the presence of autologous serum, which was collected before (CO) and after a 30-min exercise intervention (EX). In the course of activation, cells and supernatants were analyzed for cell viability and diameter, real-time oxygen consumption by using PreSens Technology, mRNA expression of glycolytic enzymes and complexes of the electron transport chain by real-time PCR, glucose, and lactate levels in supernatants, and in vitro differentiation by flow cytometry. EX did not alter T cell phenotype, viability, or on-blast formation. Similarly, no difference between CO and EX were found for CD4+ T cell activation and cellular oxygen consumption. In contrast, higher levels of glucose were found after 48 h activation in EX conditions. T cells activated in autologous exercise serum expressed lower HK1 mRNA and higher IFN-γ receptor 1. We suggest that the exercise protocol used was not sufficient to destabilize the immune metabolism of T cells. Therefore, more intense and prolonged exercise should be used in future studies.


Author(s):  
Yan Yan ◽  
Wei Zhao ◽  
Wei Liu ◽  
Yan Li ◽  
Xu Wang ◽  
...  

Abstract Background Chemokine (C–C motif) ligand 19 (CCL19) is a leukocyte chemoattractant that plays a crucial role in cell trafficking and leukocyte activation. Dysfunctional CD8+ T cells play a crucial role in persistent HBV infection. However, whether HBV can be cleared by CCL19-activated immunity remains unclear. Methods We assessed the effects of CCL19 on the activation of PBMCs in patients with HBV infection. We also examined how CCL19 influences HBV clearance and modulates HBV-responsive T cells in a mouse model of chronic hepatitis B (CHB). In addition, C–C chemokine-receptor type 7 (CCR7) knockdown mice were used to elucidate the underlying mechanism of CCL19/CCR7 axis-induced immune activation. Results From in vitro experiments, we found that CCL19 enhanced the frequencies of Ag-responsive IFN-γ+ CD8+ T cells from patients by approximately twofold, while CCR7 knockdown (LV-shCCR7) and LY294002 partially suppressed IFN-γ secretion. In mice, CCL19 overexpression led to rapid clearance of intrahepatic HBV likely through increased intrahepatic CD8+ T-cell proportion, decreased frequency of PD-1+ CD8+ T cells in blood and compromised suppression of hepatic APCs, with lymphocytes producing a significantly high level of Ag-responsive TNF-α and IFN-γ from CD8+ T cells. In both CCL19 over expressing and CCR7 knockdown (AAV-shCCR7) CHB mice, the frequency of CD8+ T-cell activation-induced cell death (AICD) increased, and a high level of Ag-responsive TNF-α and low levels of CD8+ regulatory T (Treg) cells were observed. Conclusions Findings in this study provide insights into how CCL19/CCR7 axis modulates the host immune system, which may promote the development of immunotherapeutic strategies for HBV treatment by overcoming T-cell tolerance.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1367.1-1367
Author(s):  
S. E. Kang ◽  
S. U. Kim ◽  
R. H. Kim ◽  
H. J. Yoo ◽  
Y. J. Lee ◽  
...  

Background:Semaphorin 4D (SEMA4D) / CD100, known as a subfamily of axonal guidance proteins, has also been reported to act as an immunoregulator in several infectious and inflammatory diseases [1]. Sjögren’s syndrome (SS) is a systemic autoimmune disease that primarily affects the exocrine glands by infiltrated lymphocytes resulting in dryness of mouth and eyes. IL-17 was reported to impair the integrity of tight junction barrier and attenuate the expression of aquaporin 5 (AQP5), causing salivary gland dysfunction in SS [2].Objectives:This study was aimed to evaluate the role of SEMA4D in patients with SS and investigate the effect of SEMA4D on human salivary gland epithelial cell (SGEC) and T cell.Methods:Soluble SEMA4D levels in plasma were measured by enzyme-linked immunosorbent assay (ELISA) from patients with SS, non-SS sicca and healthy controls. Immortalized human SGECs, originated from acini (NS-SV-AC) and duct (NS-SV-DC), were used to evaluate the effects of SEMA4D. CD4+T cells from human peripheral blood were isolated to determine the secretion of cytokines in response to SEMA4D. IFN-γ and IL-17 were used to determine the effects on AQP5 expression of SGEC.Results:The levels of soluble SEMA4D in plasma were increased in patients with SS (median [interquartile range]: 1221.3 [393.5] pg/mL) compared to non-SS sicca (940.2 [355.1] pg/mL,p= 0.006) or healthy controls (909.5 [108.0] pg/mL,p <0.0001). The levels of soluble SEMA4D in plasma were correlated with the levels of several autoantibodies including anti-SSA (Spearman’s rho = 0.358,p= 0.006), anti-SSB (rho = 0.350,p= 0.007), and anti-muscarinic receptor 3 (M3R) Ab (rho = 0.495,p< 0.001), and also correlated with total IgG (rho = 0.431,p= 0.002). SEMA4D-stimulated SGECs showed decreased expression of tight junctions such as occludin and Zo-1. CD4+T cells secreted IFN-γ (p= 0.025), IL-17 (p= 0.028), and IL-21 (p= 0.007) with SEMA4D stimulation. IFN-γ and IL-17 decreased AQP5 expression in SGECs.Conclusion:SEMA4D contributed to decreased expression of tight junction in SGECs. SEMA4D induced production of IFN-γ and IL-17 in CD4+T cells and these cytokine decreased AQP5 expression in SGECs.References:[1]Worzfeld T, Offermanns S. Nat Rev Drug Discov. 2014;13(8):603-21.[2]Bhattarai KR, Junjappa R, Handigund M, Kim HR, Chae HJ. Autoimmun Rev. 2018;17(4):376-90.Disclosure of Interests:None declared


2021 ◽  
Vol 9 (6) ◽  
pp. e002269
Author(s):  
Shota Aoyama ◽  
Ryosuke Nakagawa ◽  
Satoshi Nemoto ◽  
Patricio Perez-Villarroel ◽  
James J Mulé ◽  
...  

BackgroundThe temporal response to checkpoint blockade (CB) is incompletely understood. Here, we profiled the tumor infiltrating lymphocyte (TIL) landscape in response to combination checkpoint blockade at two distinct timepoints of solid tumor growth.MethodsC57BL/6 mice bearing subcutaneous MC38 tumors were treated with anti-PD-1 and/or anti-CTLA-4 antibodies. At 11 or 21 days, TIL phenotype and effector function were analyzed in excised tumor digests using high parameter flow cytometry. The contributions of major TIL populations toward overall response were then assessed using ex vivo cytotoxicity and in vivo tumor growth assays.ResultsThe distribution and effector function among 37 distinct TIL populations shifted dramatically between early and late MC38 growth. At 11 days, the immune response was dominated by Tumor necrosis factor alpha (TNFα)-producing NKT, representing over half of all TIL. These were accompanied by modest frequencies of natural killer (NK), CD4+, or CD8+ T cells, producing low levels of IFN-γ. At 21 days, NKT populations were reduced to a combined 20% of TIL, giving way to increased NK, CD4+, and CD8+ T cells, with increased IFN-γ production. Treatment with CB accelerated this switch. At day 11, CB reduced NKT to less than 20% of all TIL, downregulated TNFα across NKT and CD4+ T cell populations, increased CD4+ and CD8+ TIL frequencies, and significantly upregulated IFN-γ production. Degranulation was largely associated with NK and NKT TIL. Blockade of H-2kb and/or CD1d during ex vivo cytotoxicity assays revealed NKT has limited direct cytotoxicity against parent MC38. However, forced CD1d overexpression in MC38 cells significantly diminished tumor growth, suggesting NKT TIL exerts indirect control over MC38 growth.ConclusionsDespite an indirect benefit of early NKT activity, CB accelerates a switch from TNFα, NKT-driven immune response toward an IFN-γ driven CD4+/CD8+ T cell response in MC38 tumors. These results uncover a novel NKT/T cell switch that may be a key feature of CB response in CD1d+ tumors.


2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Pritesh Desai ◽  
Vikas Tahiliani ◽  
Georges Abboud ◽  
Jessica Stanfield ◽  
Shahram Salek-Ardakani

ABSTRACTRespiratory infection with vaccinia virus (VacV) elicits robust CD8+T cell responses that play an important role in host resistance. In the lung, VacV encounters multiple tissue-resident antigen-presenting cell (APC) populations, but which cell plays a dominant role in priming of virus-specific CD8+effector T cell responses remains poorly defined. We used Batf3−/−mice to investigate the impact of CD103+and CD8α+dendritic cell (DC) deficiency on anti-VacV CD8+T cell responses. We found that Batf3−/−mice were more susceptible to VacV infection, exhibiting profound weight loss, which correlated with impaired accumulation of gamma interferon (IFN-γ)-producing CD8+T cells in the lungs. This was largely due to defective priming since early in the response, antigen-specific CD8+T cells in the draining lymph nodes of Batf3−/−mice expressed significantly reduced levels of Ki67, CD25, and T-bet. These results underscore a specific role for Batf3-dependent DCs in regulating priming and expansion of effector CD8+T cells necessary for host resistance against acute respiratory VacV infection.IMPORTANCEDuring respiratory infection with vaccinia virus (VacV), a member ofPoxviridaefamily, CD8+T cells play important role in resolving the primary infection. Effector CD8+T cells clear the virus by accumulating in the infected lungs in large numbers and secreting molecules such as IFN-γ that kill virally infected cells. However, precise cell types that regulate the generation of effector CD8+T cells in the lungs are not well defined. Dendritic cells (DCs) are a heterogeneous population of immune cells that are recognized as key initiators and regulators of T-cell-mediated immunity. In this study, we reveal that a specific subset of DCs that are dependent on the transcription factor Batf3 for their development regulate the magnitude of CD8+T cell effector responses in the lungs, thereby providing protection during pulmonary VacV infection.


2006 ◽  
Vol 75 (3) ◽  
pp. 1154-1166 ◽  
Author(s):  
Laura H. Hogan ◽  
Dominic O. Co ◽  
Jozsef Karman ◽  
Erika Heninger ◽  
M. Suresh ◽  
...  

ABSTRACT The effect of secondary infections on CD4 T-cell-regulated chronic granulomatous inflammation is not well understood. Here, we have investigated the effect of an acute viral infection on the cellular composition and bacterial protection in Mycobacterium bovis strain bacille Calmette-Guérin (BCG)-induced granulomas using an immunocompetent and a partially immunodeficient murine model. Acute lymphocytic choriomeningitis virus (LCMV) coinfection of C57BL/6 mice led to substantial accumulation of gamma interferon (IFN-γ)-producing LCMV-specific T cells in liver granulomas and increased local IFN-γ. Despite traffic of activated T cells that resulted in a CD8 T-cell-dominated granuloma, the BCG liver organ load was unaltered from control levels. In OT-1 T-cell-receptor (TCR) transgenic mice, ovalbumin (OVA) immunization or LCMV coinfection of BCG-infected mice induced CD8 T-cell-dominated granulomas containing large numbers of non-BCG-specific activated T cells. The higher baseline BCG organ load in this CD8 TCR transgenic animal allowed us to demonstrate that OVA immunization and LCMV coinfection increased anti-BCG protection. The bacterial load remained substantially higher than in mice with a more complete TCR repertoire. Overall, the present study suggests that peripherally activated CD8 T cells can be recruited to chronic inflammatory sites, but their contribution to protective immunity is limited to conditions of underlying immunodeficiency.


Sign in / Sign up

Export Citation Format

Share Document