scholarly journals Targeted DNA methylation of neurodegenerative disease genes via homology directed repair

2019 ◽  
Author(s):  
Christopher P Cali ◽  
Daniel S Park ◽  
Edward B Lee

Abstract DNA methyltransferases (DNMTs) are thought to be involved in the cellular response to DNA damage, thus linking DNA repair mechanisms with DNA methylation. In this study we present Homology Assisted Repair Dependent Epigenetic eNgineering (HARDEN), a novel method of targeted DNA methylation that utilizes endogenous DNA double strand break repair pathways. This method allows for stable targeted DNA methylation through the process of homology directed repair (HDR) via an in vitro methylated exogenous repair template. We demonstrate that HARDEN can be applied to the neurodegenerative disease genes C9orf72 and APP, and methylation can be induced via HDR with both single and double stranded methylated repair templates. HARDEN allows for higher targeted DNA methylation levels than a dCas9-DNMT3a fusion protein construct at C9orf72, and genome-wide methylation analysis reveals no significant off-target methylation changes when inducing methylation via HARDEN, whereas the dCas9-DNMT3a fusion construct causes global off-target methylation. HARDEN is applied to generate a patient derived iPSC model of amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) that recapitulates DNA methylation patterns seen in patients, demonstrating that DNA methylation of the 5′ regulatory region directly reduces C9orf72 expression and increases histone H3K9 tri-methylation levels.

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna Danielsson ◽  
Kristell Barreau ◽  
Teresia Kling ◽  
Magnus Tisell ◽  
Helena Carén

Abstract Background Radiation is an important therapeutic tool. However, radiotherapy has the potential to promote co-evolution of genetic and epigenetic changes that can drive tumour heterogeneity, formation of radioresistant cells and tumour relapse. There is a clinical need for a better understanding of DNA methylation alterations that may follow radiotherapy to be able to prevent the development of radiation-resistant cells. Methods We examined radiation-induced changes in DNA methylation profiles of paediatric glioma stem cells (GSCs) in vitro. Five GSC cultures were irradiated in vitro with repeated doses of 2 or 4 Gy. Radiation was given in 3 or 15 fractions. DNA methylation profiling using Illumina DNA methylation arrays was performed at 14 days post-radiation. The cellular characteristics were studied in parallel. Results Few fractions of radiation did not result in significant accumulation of DNA methylation alterations. However, extended dose fractionations changed DNA methylation profiles and induced thousands of differentially methylated positions, specifically in enhancer regions, sites involved in alternative splicing and in repetitive regions. Radiation induced dose-dependent morphological and proliferative alterations of the cells as a consequence of the radiation exposure. Conclusions DNA methylation alterations of sites with regulatory functions in proliferation and differentiation were identified, which may reflect cellular response to radiation stress through epigenetic reprogramming and differentiation cues.


2020 ◽  
Vol 98 (2) ◽  
pp. 145-153 ◽  
Author(s):  
Jing Zhang ◽  
Liam J. Hawkins ◽  
Kenneth B. Storey

The wood frog is one of the few freeze-tolerance vertebrates. This is accomplished in part by the accumulation of cryoprotectant glucose, metabolic rate depression, and stress response activation. These may be achieved by mechanisms such as DNA methylation, which is typically associated with transcriptional repression. Hyperglycemia is also associated with modifications to epigenetic profiles, indicating an additional role that the high levels of glucose play in freeze tolerance. We sought to determine whether DNA methylation is affected during freezing exposure, and whether this is due to the wood frog’s response to hyperglycemia. We examined global DNA methylation and DNA methyltransferases (DNMTs) in the liver and muscle of frozen and glucose-loaded wood frogs. The results showed that levels of 5-methylcytosine (5mC) increased in the muscle, suggesting elevated DNA methylation during freezing. DNMT activities also decreased in muscle during thawing, glucose loading, and in vitro glucose experiments. Liver DNMT activities were similar to muscle; however, a varied response to DNMT levels and a decrease in 5mC highlight the metabolic role the liver plays during freezing. Glucose was also shown to decrease DNMT activity levels in the wood frog, in vitro, elucidating a potentially novel regulatory mechanism. Together these results suggest an interplay between freeze tolerance and hyperglycemic regulation of DNA methylation.


Author(s):  
Bo Jia ◽  
Jun Chen ◽  
Qin Wang ◽  
Xiang Sun ◽  
Jiusong Han ◽  
...  

BackgroundAdipose-derived stem cells (ADSCs) are increasingly used in regenerative medicine because of their potential to differentiate into multiple cell types, including osteogenic lineages. Sirtuin protein 6 (SIRT6) is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase that plays important roles in cell differentiation. NOTCH signaling has also been reported to involve in osteogenic differentiation. However, the function of SIRT6 in osteogenic differentiation of ADSCs and its relation to the NOTCH signaling pathways are yet to be explored.MethodsThe in vitro study with human ADSCs (hADSCs) and in vivo experiments with nude mice have been performed. Alkaline phosphatase (ALP) assays and ALP staining were used to detect osteogenic activity. Alizarin Red staining was performed to detect calcium deposition induced by osteogenic differentiation of ADSCs. Western blot, RT-qPCR, luciferase reporter assay, and co-immunoprecipitation assay were applied to explore the relationship between of SIRT6, DNA methyltransferases (DNMTs) and NOTCHs.ResultsSIRT6 promoted ALP activity, enhanced mineralization and upregulated expression of osteogenic-related genes of hADSCs in vitro and in vivo. Further mechanistic studies showed that SIRT6 deacetylated DNMT1, leading to its unstability at protein level. The decreased expression of DNMT1 prevented the abnormal DNA methylation of NOTCH1 and NOTCH2, resulting in the upregulation of their transcription. SIRT6 overexpression partially suppressed the abnormal DNA methylation of NOTCH1 and NOTCH2 by antagonizing DNMT1, leading to an increased capacity of ADSCs for their osteogenic differentiation.ConclusionThis study demonstrates that SIRT6 physical interacts with the DNMT1 protein, deacetylating and destabilizing DNMT1 protein, leading to the activation of NOTCH1 and NOTCH2, Which in turn promotes the osteogenic differentiation of ADSCs.


1998 ◽  
Vol 180 (22) ◽  
pp. 5913-5920 ◽  
Author(s):  
Marjan van der Woude ◽  
W. Bradley Hale ◽  
David A. Low

ABSTRACT Most of the adenine residues in GATC sequences in theEscherichia coli chromosome are methylated by the enzyme deoxyadenosine methyltransferase (Dam). However, at least 20 GATC sequences remain nonmethylated throughout the cell cycle. Here we examined how the DNA methylation patterns of GATC sequences within the regulatory regions of the pyelonephritis-associated pilus (pap) operon and the glucitol utilization (gut) operon were formed. The results obtained with an in vitro methylation protection assay showed that the addition of the leucine-responsive regulatory protein (Lrp) to pap DNA was sufficient to protect the two GATC sequences in the pap regulatory region, GATC-I and GATC-II, from methylation by Dam. This finding was consistent with previously published data showing that Lrp was essential for methylation protection of these DNA sites in vivo. Methylation protection also occurred at a GATC site (GATC-44.5) centered 44.5 bp upstream of the transcription start site of thegutABD operon. Two proteins, GutR and the catabolite gene activator protein (CAP), bound to DNA sites overlapping the GATC-44.5-containing region of the gutABD operon. GutR, an operon-specific repressor, was essential for methylation protection in vivo, and binding of GutR protected GATC-44.5 from methylation in vitro. In contrast, binding of CAP at a site overlapping GATC-44.5 did not protect this site from methylation. Mutational analyses indicated that gutABD gene regulation was not controlled by methylation of GATC-44.5, in contrast to regulation of Pap pilus expression, which is directly controlled by methylation of thepap GATC-I and GATC-II sites.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3446-3446
Author(s):  
Petra Tschanter ◽  
Isabell Schulze ◽  
Nicole Bäumer ◽  
Beate Surmann ◽  
Konstantin Agelopoulos ◽  
...  

Abstract Abstract 3446 Acute myeloid leukaemia (AML) is a malignant disease with poor prognosis, which is, among other biological features, characterized by epigenetic changes including alterations in DNA methylation. DNA methyltransferases (DNMT) play an important role in regulation of DNA methylation and mutations of DNMT3A are frequently found in AML. We analyzed the effects of DNMT overexpression on leukemogenesis using an inducible DNMT3B mouse model (Linhart et al., 2007). To analyse the impact of DNMT3B overexpression on leukemia we retrovirally co-transduced lineage-negative bone marrow cells of wildtype and DNMT3Btg mice with a MSCV-cMyc-bcl2 and a MSCV-tTA-GFP containing vector. Under these conditions, doxycycline suppressed DNMT3B expression whereas absence of doxycycline led to overexpression of DNMT3B on the mRNA and protein level. DNMT3B overexpression was not toxic since colony formation in vitro did not differ between DNMT3B expressing and physiologically expressing cells. To analyze leukemogenesis, 5 × 104 sorted GFP-positive cells were transplanted into sublethally irradiated wildtype recipients. Both recipients of transduced wildtype cells and recipients of transduced DNMT3Btg cells developed leukemia with a tendency of delayed leukemogenesis in DNMT3B overexpressing mice. GFP positive leukemic cells were sorted and doxycycline regulated DNMT3B expression was verified by Western blot analysis in vitro. To determine the repopulation capacity of the leukemic cells we performed transplantation of GFP-positive primary leukemia cells into secondary wildtype recipients. Leukemia of both, wildtype and DNMT3B-overexpressing donors was transplantable and lethal. However, DNMT3Btg leukemic cells were severely impaired in leukemia development in secondary recipients. Secondary recipients of leukemic DNMT3Btg cells died significantly later (p= 0.02). Taken together, these findings demonstrate that DNMT3B expression impairs leukemia maintenance. Loss of DNMT activity might contribute to the pool size of leukemia initiating cells. Disclosures: Krug: Boehringer Ingelheim: Research Funding.


Reproduction ◽  
2007 ◽  
Vol 134 (6) ◽  
pp. 781-787 ◽  
Author(s):  
Gabbine Wee ◽  
Jung-Jae Shim ◽  
Deog-Bon Koo ◽  
Jung-Il Chae ◽  
Kyung-Kwang Lee ◽  
...  

Epigenetic reprogramming is a prerequisite process during mammalian development that is aberrant in cloned embryos. However, mechanisms that evolve abnormal epigenetic reprogramming during preimplantation development are unclear. To trace the molecular event of an epigenetic mark such as DNA methylation, bovine fibroblasts were epigeneticallyaltered by treatment with trichostatin A (TSA) and then individually transferred into enucleated bovine oocytes. In the TSA-treated cells, expression levels of histone deacetylases and DNA methyltransferases were reduced, but the expression level of histone acetyltransferases such as Tip60 and histone acetyltransferase 1 (HAT1) did not change compared with normal cells. DNA methylation levels of non-treated (normal) and TSA-treated cells were 64.0 and 48.9% in the satellite I sequence (P < 0.05) respectively, and 71.6 and 61.9% in the α-satellite sequence respectively. DNA methylation levels of nuclear transfer (NT) and TSA-NT blastocysts in the satellite I sequence were 67.2 and 42.2% (P < 0.05) respectively, which was approximately similar to those of normal and TSA-treated cells. In the α-satellite sequence, NT and TSA-NT embryos were substantially demethylated at the blastocyst stage as IVF-derived embryos were demethylated. The in vitro developmental rate (46.6%) of TSA-NT embryos that were individually transferred with TSA-treated cells was higher than that (31.7%) of NT embryos with non-treated cells (P < 0.05). Our findings suggest that the chromatin of a donor cell is unyielding to the reprogramming of DNA methylation during preimplantation development, and that alteration of the epigenetic state of donor cells may improve in vitro developmental competence of cloned embryos.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. M. Livernois ◽  
B. A. Mallard ◽  
S. L. Cartwright ◽  
A. Cánovas

AbstractHeat stress negatively affects health and production in cows. Examining the cellular response to heat stress could reveal underlying protective molecular mechanisms associated with superior resilience and ultimately enable selection for more resilient cattle. This type of investigation is increasingly important as future predictions for the patterns of heat waves point to increases in frequency, severity, and duration. Cows identified as high immune responders based on High Immune Response technology (HIR) have lower disease occurrence compared to their average and low immune responder herd-mates. In this study, our goal was to identify epigenetic differences between high and low immune responder cows in response to heat stress. We examined genome-wide DNA methylation of blood mononuclear cells (BMCs) isolated from high and low cows, before and after in vitro heat stress. We identified differential methylation of promoter regions associated with a variety of biological processes including immune function, stress response, apoptosis, and cell signalling. The specific differentially methylated promoter regions differed between samples from high and low cows, and results revealed pathways associated with cellular protection during heat stress.


2021 ◽  
Vol 9 (1) ◽  
pp. 27-32
Author(s):  
Mariusz J. Nawrocki ◽  
Rut Bryl ◽  
Sandra Kałużna ◽  
Katarzyna Stefańska ◽  
Bogumiła Stelmach ◽  
...  

Abstract Heart failure (HF) is one of the main causes of death worldwide. Recent studies reported altered DNA methylation in failing human hearts. This may suggest a role of DNA methylation, most frequently implicated in epigenetic control, in the development of heart failure. Here, employing RT-qPCR, we characterized transcript levels for main DNA methyltransferases (DNMTs), DNMT1, DNMT3A, and DNMT3B, mediate DNA methylation, and they have different functions that complement each other during methylation. All analyzes were performed at different stages of porcine myocardial cell primary culture. In the present study we demonstrated increasing transcript expression levels for all analyzed genes during in vitro cultivation. The changes for DNMT1 and DNMT3A seem to be particularly important, where statistically significant changes were observed. Running title: DNMTs role in cardiac muscle cell culture


2017 ◽  
Vol 29 (1) ◽  
pp. 142 ◽  
Author(s):  
D. Salilew-Wondim ◽  
M. Hoelker ◽  
U. Besenfelder ◽  
V. Havlicek ◽  
E. Held ◽  
...  

Suboptimal culture condition before minor or major genome activation is believed to affect the quality and the transcriptome landscape of the resulting blastocysts. Thus, we hypothesised that exposure of bovine embryos to suboptimal culture condition before minor embryonic genome activation could affect the genome methylation patterns of the resulting blastocysts. Therefore, here we aimed to investigate the genome wide DNA methylation patterns of blastocysts derived from embryos developed up to 2-cell stages in vivo followed by in vitro culture. For this, Simmental heifers were superovulated and artificially inseminated. The 2-cell stage embryos were then flushed using a state-of-the-art nonsurgical endoscopic early-stage embryo flushing technique and in vitro cultured until the blastocyst stage. The DNA methylation patterns of these blastocysts were then determined with reference to blastocysts derived from embryos developed completely under in vivo condition. For this, the genomic DNA isolated from each blastocyst group were fragmented, and unmethylated genomic regions were cleaved using methylation sensitive restriction enzymes. The samples were then amplified using ligation mediated PCR and labelled either with Cy-3 or Cy-5 dyes in a dye-swap design using the ULS Fluorescent genomic DNA labelling kit (Kreatech Biotechnology) and hybridized on an EmbryoGENE DNA Methylation Array as described previously (Saadi 2014 BMC Genomics 15, 451; Salilew-Wondim 2015 PLoS ONE 10, e0140467). Array hybridization was performed for 40 h at 65°C, and 4 hybridizations were preformed to represent 4 biological replicates. The slides were scanned using Agilent’s High-Resolution C Scanner (Agilent Technologies, Santa Clara, CA, USA), and Agilent’s Feature Extraction software (Agilent Technologies) was used to extract data features. Differentially methylated regions with fold change ≥1.5 and P-value < 0.05 were identified using linear modelling for microarray and R software. The results have shown that including imprinted genes (PEG3, IGF1, RASGRF1, IGF2R, GRB10, SNRPN, and PLAGL1) and DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B), a total of 10,388 genomic regions were differentially methylated, of which 6393 genomic regions were hypermethylated in blastocysts derived from 2-cell flush compared with the complete vivo group. In addition, comparative analysis of the current DNA methylation data with our previous transcriptome profile data have shown that including DNMT3A, CTSZ, ElF3E, and PPP2R2B, the expression patterns of 603 genes was inversely correlated with the methylation patterns. Moreover, canonical pathways including gap junction, adherens junction, axon guidance, focal adhesion, and calcium signalling were affected by differentially methylated regions. Therefore, this study indicated that exposure of embryos to suboptimal culture condition before embryonic genome activation would lead to a massive dysregulation of methylation pattern of genes involved in developmentally relevant pathways in the resulting blastocysts.


2002 ◽  
Vol 184 (12) ◽  
pp. 3338-3347 ◽  
Author(s):  
Anu Wallecha ◽  
Vincent Munster ◽  
Jason Correnti ◽  
Teresa Chan ◽  
Marjan van der Woude

ABSTRACT Phase variation of the outer membrane protein Ag43 in E. coli requires deoxyadenosine methylase (Dam) and OxyR. Previously, it was shown that OxyR is required for repression of the Ag43-encoding gene, agn43, and that Dam-dependent methylation of three GATC target sequences in the regulatory region abrogates OxyR binding. Here we report further characterization of agn43 transcription and its regulation. Transcription was initiated from a σ70-dependent promoter at the G residue of the upstream GATC sequence. Template DNA and RNA polymerase were sufficient to obtain transcription in vitro, but DNA methylation enhanced the level of transcription. Analyses of transcription in vivo of agn′-lacZ with mutated Dam target sequences support this conclusion. Since methylation also abrogates OxyR binding, this indicates that methylation plays a dual role in facilitating agn43 transcription. In vitro transcription from an unmethylated template was repressed by OxyR(C199S), which resembles the reduced form of OxyR. Consistent with this and the role of Dam in OxyR binding, OxyR(C199S) protected from DNase I digestion the agn43 regulatory region from −16 to +42, which includes the three GATC sequences. Deletion analyses of the regulatory region showed that a 101-nucleotide region of the agn43 regulatory region containing the promoter and this OxyR binding region was sufficient for Dam- and OxyR-dependent phase variation


Sign in / Sign up

Export Citation Format

Share Document