scholarly journals Multivariate model for cooperation: bridging social physiological compliance and hyperscanning

Author(s):  
Nicolina Sciaraffa ◽  
Jieqiong Liu ◽  
Pietro Aricò ◽  
Gianluca Di Flumeri ◽  
Bianca M S Inguscio ◽  
...  

Abstract The neurophysiological analysis of cooperation has evolved over the past 20 years, moving towards the research of common patterns in neurophysiological signals of people interacting. Social physiological compliance (SPC) and hyperscanning represent two frameworks for the joint analysis of autonomic and brain signals, respectively. Each of the two approaches allows to know about a single layer of cooperation according to the nature of these signals: SPC provides information mainly related to emotions, and hyperscanning that related to cognitive aspects. In this work, after the analysis of the state of the art of SPC and hyperscanning, we explored the possibility to unify the two approaches creating a complete neurophysiological model for cooperation considering both affective and cognitive mechanisms We synchronously recorded electrodermal activity, cardiac and brain signals of 14 cooperative dyads. Time series from these signals were extracted, and multivariate Granger causality was computed. The results showed that only when subjects in a dyad cooperate there is a statistically significant causality between the multivariate variables representing each subject. Moreover, the entity of this statistical relationship correlates with the dyad’s performance. Finally, given the novelty of this approach and its exploratory nature, we provided its strengths and limitations.

Author(s):  
Carl E. Henderson

Over the past few years it has become apparent in our multi-user facility that the computer system and software supplied in 1985 with our CAMECA CAMEBAX-MICRO electron microprobe analyzer has the greatest potential for improvement and updating of any component of the instrument. While the standard CAMECA software running on a DEC PDP-11/23+ computer under the RSX-11M operating system can perform almost any task required of the instrument, the commands are not always intuitive and can be difficult to remember for the casual user (of which our laboratory has many). Given the widespread and growing use of other microcomputers (such as PC’s and Macintoshes) by users of the microprobe, the PDP has become the “oddball” and has also fallen behind the state-of-the-art in terms of processing speed and disk storage capabilities. Upgrade paths within products available from DEC are considered to be too expensive for the benefits received. After using a Macintosh for other tasks in the laboratory, such as instrument use and billing records, word processing, and graphics display, its unique and “friendly” user interface suggested an easier-to-use system for computer control of the electron microprobe automation. Specifically a Macintosh IIx was chosen for its capacity for third-party add-on cards used in instrument control.


2021 ◽  
Vol 11 (12) ◽  
pp. 5656
Author(s):  
Yufan Zeng ◽  
Jiashan Tang

Graph neural networks (GNNs) have been very successful at solving fraud detection tasks. The GNN-based detection algorithms learn node embeddings by aggregating neighboring information. Recently, CAmouflage-REsistant GNN (CARE-GNN) is proposed, and this algorithm achieves state-of-the-art results on fraud detection tasks by dealing with relation camouflages and feature camouflages. However, stacking multiple layers in a traditional way defined by hop leads to a rapid performance drop. As the single-layer CARE-GNN cannot extract more information to fix the potential mistakes, the performance heavily relies on the only one layer. In order to avoid the case of single-layer learning, in this paper, we consider a multi-layer architecture which can form a complementary relationship with residual structure. We propose an improved algorithm named Residual Layered CARE-GNN (RLC-GNN). The new algorithm learns layer by layer progressively and corrects mistakes continuously. We choose three metrics—recall, AUC, and F1-score—to evaluate proposed algorithm. Numerical experiments are conducted. We obtain up to 5.66%, 7.72%, and 9.09% improvements in recall, AUC, and F1-score, respectively, on Yelp dataset. Moreover, we also obtain up to 3.66%, 4.27%, and 3.25% improvements in the same three metrics on the Amazon dataset.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Roberto Vincenti Gatti ◽  
Riccardo Rossi ◽  
Marco Dionigi

In this work, the issue of limited bandwidth typical of microstrip antennas realized on a single thin substrate is addressed. A simple yet effective design approach is proposed based on the combination of traditional single-resonance patch geometries. Two novel shaped microstrip patch antenna elements with an inset feed are presented. Despite being printed on a single-layer substrate with reduced thickness, both radiators are characterized by a broadband behavior. The antennas are prototyped with a low-cost and fast manufacturing process, and measured results validate the simulations. State-of-the-art performance is obtained when compared to the existing literature, with measured fractional bandwidths of 3.71% and 6.12% around 10 GHz on a 0.508-mm-thick Teflon-based substrate. The small feeding line width could be an appealing feature whenever such radiating elements are to be used in array configurations.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xudong Zhu ◽  
Zhiyang Chen ◽  
Weiyan Shen ◽  
Gang Huang ◽  
John M. Sedivy ◽  
...  

AbstractRemarkable progress in ageing research has been achieved over the past decades. General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ageing. Epigenetic dynamics and immunometabolic reprogramming link to the alterations of cellular response to intrinsic and extrinsic stimuli, representing current hotspots as they not only (re-)shape the individual cell identity, but also involve in cell fate decision. This review focuses on the present findings and emerging concepts in epigenetic, inflammatory, and metabolic regulations and the consequences of the ageing process. Potential therapeutic interventions targeting cell senescence and regulatory mechanisms, using state-of-the-art techniques are also discussed.


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Mazen Mohamad ◽  
Jan-Philipp Steghöfer ◽  
Riccardo Scandariato

AbstractSecurity Assurance Cases (SAC) are a form of structured argumentation used to reason about the security properties of a system. After the successful adoption of assurance cases for safety, SAC are getting significant traction in recent years, especially in safety-critical industries (e.g., automotive), where there is an increasing pressure to be compliant with several security standards and regulations. Accordingly, research in the field of SAC has flourished in the past decade, with different approaches being investigated. In an effort to systematize this active field of research, we conducted a systematic literature review (SLR) of the existing academic studies on SAC. Our review resulted in an in-depth analysis and comparison of 51 papers. Our results indicate that, while there are numerous papers discussing the importance of SAC and their usage scenarios, the literature is still immature with respect to concrete support for practitioners on how to build and maintain a SAC. More importantly, even though some methodologies are available, their validation and tool support is still lacking.


Author(s):  
Fabricio Almeida-Silva ◽  
Kanhu C Moharana ◽  
Thiago M Venancio

Abstract In the past decade, over 3000 samples of soybean transcriptomic data have accumulated in public repositories. Here, we review the state of the art in soybean transcriptomics, highlighting the major microarray and RNA-seq studies that investigated soybean transcriptional programs in different tissues and conditions. Further, we propose approaches for integrating such big data using gene coexpression network and outline important web resources that may facilitate soybean data acquisition and analysis, contributing to the acceleration of soybean breeding and functional genomics research.


2021 ◽  
pp. 1-11
Author(s):  
Chang Liu ◽  
Murat Yücel ◽  
Chao Suo ◽  
Mike E. Le Pelley ◽  
Jeggan Tiego ◽  
...  

Background: To date, there has been little investigation on how motivational and cognitive mechanisms interact to influence problematic drinking behaviours. Towards this aim, the current study examined whether reward-related attentional capture is associated with reward, fear (relief), and habit drinking motives, and further, whether it interacts with these motives in relation to problematic drinking patterns. Methods: Ninety participants (mean age = 34.8 years, SD = 9.1, 54% male) who reported having consumed alcohol in the past month completed an online visual search task that measured reward-related attentional capture as well as the Habit Reward Fear Scale, a measure of drinking motives. Participants also completed measures of psychological distress, impulsivity, compulsive drinking, and consumption items of Alcohol Use Disorders Identification Test. Regression analyses examined the associations between motives for alcohol consumption and reward-related attentional capture, as well as the associations between reward-related attentional capture, motives, and their interaction, with alcohol consumption and problems. Results: Greater reward-related attentional capture was associated with greater reward motives. Further, reward-related attentional capture also interacted with fear motives in relation to alcohol consumption. Follow-up analyses showed that this interaction was driven by greater fear motives being associated with heavier drinking among those with lower reward-related attentional capture (i.e., “goal-trackers”). Conclusion: These findings have implications for understanding how cognition may interact with motives in association with problematic drinking. Specifically, the findings highlight different potential pathways to problematic drinking according to an individual’s cognitive-motivational profile and may inform tailored interventions to target profile-specific mechanisms. Finally, these findings offer support for contemporary models of addiction that view excessive goal-directed behaviour under negative affect as a critical contributor to addictive behaviours.


Open Theology ◽  
2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Thomas G. Plante

AbstractSince the publication of Bergin’s classic 1980 paper “Psychotherapy and Religious Values” in the Journal of Clinical and Consulting Psychology, an enormous amount of quality research has been conducted on the integration of religious and spiritual values and perspectives into the psychotherapy endeavor. Numerous empirical studies, chapters, books, blogs, and specialty organizations have emerged in the past 35 years that have helped researchers and clinicians alike come to appreciate the value of religion and spirituality in the psychotherapeutic process. While so much has been accomplished in this area of integration, so much more needs to occur in order for the psychotherapeutic world to benefit from the wisdom of the great religious and spiritual traditions and values. While state-of-the-art quality research has and continues to demonstrate how religious and spiritual practices and values can be used effectively to enhance the benefits of behavioral and psychological interventions, too often the field either gets overly focused on particular and perhaps trendy areas of interest (e.g., mindfulness) or fails to appreciate and incorporate the research evidence supporting (or not supporting) the use of certain religiously or spiritually informed assessments and interventions. The purpose of this article is to reflect on where the field integrating religion, spirituality and psychotherapy has evolved through the present and where it still needs to go in the future. In doing so I hope to reflect on the call for integration that Bergin highlights in his classic 1980 paper.


Erdkunde ◽  
2021 ◽  
Vol 75 (2) ◽  
pp. 87-104
Author(s):  
Nicola Di Cosmo ◽  
Sebastian Wagner ◽  
Ulf Büntgen

After a successful conquest of large parts of Syria in 1258 and 1259 CE, the Mongol army lost the battle of 'Ayn Jālūt against Mamluks on September 3, 1260 CE. Recognized as a turning point in world history, their sudden defeat triggered the reconfiguration of strategic alliances and geopolitical power not only in the Middle East, but also across much of Eurasia. Despite decades of research, scholars have not yet reached consensus over the causes of the Mongol reverse. Here, we revisit previous arguments in light of climate and environmental changes in the aftermath of one the largest volcanic forcings in the past 2500 years, the Samalas eruption ~1257 CE. Regional tree ring-based climate reconstructions and state-of-the-art Earth System Model simulations reveal cooler and wetter conditions from spring 1258 to autumn 1259 CE for the eastern Mediterranean/Arabian region. We therefore hypothesize that the post-Samalas climate anomaly and associated environmental variability affected an estimated 120,000 Mongol soldiers and up to half a million of their horses during the conquest. More specifically, we argue that colder and wetter climates in 1258 and 1259 CE, while complicating and slowing the campaign in certain areas, such as the mountainous regions in the Caucasus and Anatolia, also facilitated the assault on Syria between January and March 1260. A return to warmer and dryer conditions in the summer of 1260 CE, however, likely reduced the regional carrying capacity and may therefore have forced a mass withdrawal of the Mongols from the region that contributed to the Mamluks’ victory. In pointing to a distinct environmental dependency of the Mongols, we offer a new explanation of their defeat at 'Ayn Jālūt, which effectively halted the further expansion of the largest ever land-based empire.


Sign in / Sign up

Export Citation Format

Share Document