scholarly journals Response of Sorghum Enhanced in Monolignol Biosynthesis to Stalk Rot Pathogens

Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2277-2287 ◽  
Author(s):  
Deanna L. Funnell-Harris ◽  
Scott E. Sattler ◽  
Patrick M. O’Neill ◽  
Tammy Gries ◽  
Hannah M. Tetreault ◽  
...  

To increase phenylpropanoid constituents and energy content in the versatile C4 grass sorghum (Sorghum bicolor [L.] Moench), sorghum genes for proteins related to monolignol biosynthesis were overexpressed: SbMyb60 (transcriptional activator), SbPAL (phenylalanine ammonia lyase), SbCCoAOMT (caffeoyl coenzyme A [CoA] 3-O-methyltransferase), Bmr2 (4-coumarate:CoA ligase), and SbC3H (coumaroyl shikimate 3-hydroxylase). Overexpression lines were evaluated for responses to stalk pathogens under greenhouse and field conditions. Greenhouse-grown plants were inoculated with Fusarium thapsinum (Fusarium stalk rot) and Macrophomina phaseolina (charcoal rot), which cause yield-reducing diseases. F. thapsinum-inoculated overexpression plants had mean lesion lengths not significantly different than wild-type, except for significantly smaller lesions on two of three SbMyb60 and one of two SbCCoAOMT lines. M. phaseolina-inoculated overexpression lines had lesions not significantly different from wild-type except one SbPAL line (of two lines studied) with mean lesion lengths significantly larger. Field-grown SbMyb60 and SbCCoAOMT overexpression plants were inoculated with F. thapsinum. Mean lesions of SbMyb60 lines were similar to wild-type, but one SbCCoAOMT had larger lesions, whereas the other line was not significantly different than wild-type. Because overexpression of SbMyb60, Bmr2, or SbC3H may not render sorghum more susceptible to stalk rots, these lines may provide sources for development of sorghum with increased phenylpropanoid concentrations.

Plant Disease ◽  
2016 ◽  
Vol 100 (5) ◽  
pp. 896-903 ◽  
Author(s):  
Deanna L. Funnell-Harris ◽  
Patrick M. O’Neill ◽  
Scott E. Sattler ◽  
Melinda K. Yerka

Sweet sorghum (Sorghum bicolor (L.) Moench) has potential for bioenergy. It is adapted to a variety of U.S. locations and the extracted juice can be directly fermented into ethanol. However, little research on fungal stalk rots, diseases that pose serious constraints for yield and quality of juice and biomass, has been reported. A greenhouse bioassay was designed to assess charcoal rot (Macrophomina phaseolina) and Fusarium stalk rot (Fusarium thapsinum) in plants at maturity, the developmental stage at which these diseases are manifested. Multiple plantings of a susceptible grain line, RTx430, were used as a control for variation in flowering times among sweet sorghum lines. Lesion length measurements in inoculated peduncles were used to quantify disease severity. Sweet sorghum lines ‘Rio’ and ‘M81E’ exhibited resistance to F. thapsinum and M. phaseolina, respectively; and, in contrast, ‘Colman’ sorghum exhibited susceptibility to both pathogens. Lesion development over time in Colman was monitored. These results will enhance molecular and biochemical analyses of responses to pathogens, and breeding stalk-rot-resistant sweet sorghum lines.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1300-1308 ◽  
Author(s):  
Deanna L. Funnell-Harris ◽  
Scott E. Sattler ◽  
Jeffrey F. Pedersen

Sorghum lines were bred for reduced lignin for cellulosic bioenergy uses, through the incorporation of brown midrib (bmr)6 or -12 into two backgrounds (RTx430 and Wheatland) as either single or double-mutant lines. When these lines were assessed for resistance to Fusarium thapsinum stalk rot, a cause of lodging, they were as resistant to F. thapsinum as the near-isogenic wild type. Peduncles of newly identified bmr lines from an ethyl-methanesulfonate-mutagenized population, inoculated with F. thapsinum, were as resistant as the wild-type line, BTx623. One bmr line (1107) had significantly smaller mean lesion lengths than BTx623, suggesting that a mutation is associated with reduced susceptibility. Growing F. thapsinum on medium with ferulic, vanillic, sinapic, syringic, and caffeic acids (phenolic compounds derived from the lignin pathway and elevated in different bmr lines) indicated that F. thapsinum was tolerant to these compounds. When eight other sorghum fungi were tested for response to the presence of these compounds, ferulic acid inhibited these fungi. Most of the phenolics inhibited F. verticillioides and F. proliferatum. Accumulation of phenolic metabolites in bmr plants may inhibit growth of some sorghum pathogens, while other factors such as aromatic phytoalexins or salicylic acid may be involved in resistance to F. thapsinum.


Genetics ◽  
2003 ◽  
Vol 163 (4) ◽  
pp. 1337-1356 ◽  
Author(s):  
Adelaide T C Carpenter

Abstract The meiotic phenotypes of two mutant alleles of the mei-W68 gene, 1 and L1, were studied by genetics and by serial-section electron microscopy. Despite no or reduced exchange, both mutant alleles have normal synaptonemal complex. However, neither has any early recombination nodules; instead, both exhibit high numbers of very long (up to 2 μm) structures here named “noodles.” These are hypothesized to be formed by the unchecked extension of identical but much shorter structures ephemerally seen in wild type, which may be precursors of early recombination nodules. Although the mei-W68L1 allele is identical to the mei-W681 allele in both the absence of early recombination nodules and a high frequency of noodles (i.e., it is amorphic for the noodle phene), it is hypomorphic in its effects on exchange and late recombination nodules. The differential effects of this allele on early and late recombination nodules are consistent with the hypothesis that Drosophila females have two separate recombination pathways—one for simple gene conversion, the other for exchange.


Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 1247-1255 ◽  
Author(s):  
Eiji Nambara ◽  
Masaharu Suzuki ◽  
Suzanne Abrams ◽  
Donald R McCarty ◽  
Yuji Kamiya ◽  
...  

Abstract The plant hormone abscisic acid (ABA) controls many aspects of plant growth and development under a diverse range of environmental conditions. To identify genes functioning in ABA signaling, we have carried out a screen for mutants that takes advantage of the ability of wild-type Arabidopsis seeds to respond to (−)-(R)-ABA, an enantiomer of the natural (+)-(S)-ABA. The premise of the screen was to identify mutations that preferentially alter their germination response in the presence of one stereoisomer vs. the other. Twenty-six mutants were identified and genetic analysis on 23 lines defines two new loci, designated CHOTTO1 and CHOTTO2, and a collection of new mutant alleles of the ABA-insensitive genes, ABI3, ABI4, and ABI5. The abi5 alleles are less sensitive to (+)-ABA than to (−)-ABA. In contrast, the abi3 alleles exhibit a variety of differences in response to the ABA isomers. Genetic and molecular analysis of these alleles suggests that the ABI3 transcription factor may perceive multiple ABA signals.


2002 ◽  
Vol 184 (4) ◽  
pp. 1172-1179 ◽  
Author(s):  
Thomas M. A. Gronewold ◽  
Dale Kaiser

ABSTRACT Cell-bound C-signal guides the building of a fruiting body and triggers the differentiation of myxospores. Earlier work has shown that transcription of the csgA gene, which encodes the C-signal, is directed by four genes of the act operon. To see how expression of the genes encoding components of the aggregation and sporulation processes depends on C-signaling, mutants with loss-of-function mutations in each of the act genes were investigated. These mutations were found to have no effect on genes that are normally expressed up to 3 h into development and are C-signal independent. Neither the time of first expression nor the rate of expression increase was changed in actA, actB, actC, or actD mutant strains. Also, there was no effect on A-signal production, which normally starts before 3 h. By contrast, the null act mutants have striking defects in C-signal production. These mutations changed the expression of four gene reporters that are related to aggregation and sporulation and are expressed at 6 h or later in development. The actA and actB null mutations substantially decreased the expression of all these reporters. The other act null mutations caused either premature expression to wild-type levels (actC) or delayed expression (actD), which ultimately rose to wild-type levels. The pattern of effects on these reporters shows how the C-signal differentially regulates the steps that together build a fruiting body and differentiate spores within it.


2006 ◽  
Vol 203 (2) ◽  
pp. 325-335 ◽  
Author(s):  
Tetsuya Honda ◽  
Eri Segi-Nishida ◽  
Yoshiki Miyachi ◽  
Shuh Narumiya

Prostaglandin (PG)I2 (prostacyclin [PGI]) and PGE2 are abundantly present in the synovial fluid of rheumatoid arthritis (RA) patients. Although the role of PGE2 in RA has been well studied, how much PGI2 contributes to RA is little known. To examine this issue, we backcrossed mice lacking the PGI receptor (IP) to the DBA/1J strain and subjected them to collagen-induced arthritis (CIA). IP-deficient (IP−/−) mice exhibited significant reduction in arthritic scores compared with wild-type (WT) mice, despite anti-collagen antibody production and complement activation similar to WT mice. IP−/− mice also showed significant reduction in contents of proinflammatory cytokines, such as interleukin (IL)-6 in arthritic paws. Consistently, the addition of an IP agonist to cultured synovial fibroblasts significantly enhanced IL-6 production and induced expression of other arthritis-related genes. On the other hand, loss or inhibition of each PGE receptor subtype alone did not affect elicitation of inflammation in CIA. However, a partial but significant suppression of CIA was achieved by the combined inhibition of EP2 and EP4. Our results show significant roles of both PGI2-IP and PGE2-EP2/EP4 signaling in the development of CIA, and suggest that inhibition of PGE2 synthesis alone may not be sufficient for suppression of RA symptoms.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 18-19
Author(s):  
Felipe Hickmann ◽  
José Braccini Neto ◽  
Luke M Kramer ◽  
Kent A Gray ◽  
Yijian Huang ◽  
...  

Abstract Studies on differences in resilience to porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) between breeds are scarce in the literature. Thus, the objective of this work was to assess PRRSV resilience in PRRSV wild-type infected sows from two breeds. Farrowing data included 2546 and 2522 litters from 894 Duroc and 813 Landrace sows, respectively, which were housed together and experienced the same PRRSV outbreak. Traits used for this study were number of piglets born alive (NBA), number born dead (NBD), total number born (TNB), and number weaned (NW). The impact of PRRSV infection was evaluated by comparing the reproductive performance of breeds between PRRS phases (pre-PRRS, PRRS, and post-PRRS). PRRS phases were defined based on the reproductive performance data. NBA, NBD, and NW were analyzed as a proportion of TNB using a Poisson mixed model. Pre-defined contrasts were used to evaluate the effect of breed on PRRSV resilience and on return to PRRSV-free performance, representing the differences between breeds for the difference between pre-PRRS and PRRS phases, and pre-PRRS and post-PRRS phases, respectively. There was a significant (P ≤ 0.003) interaction between PRRS phase and breed for all traits, as shown in Table 1. In general, reproductive performance reduced from pre-PRRS to PRRS, and then increased from PRRS to post-PRRS, as expected. The resilience contrast was significant for all traits (P ≤ 0.003). In all cases, the drop in percent reproductive performance from pre-PRRS to PRRS was lower for Duroc than for Landrace, indicating that Duroc sows have greater PRRSV resilience than Landrace sows. The return to PRRSV-free performance contrast had a trending effect for NBD (P = 0.055), and it was not significant for the other traits (P ≥ 0.515). These results indicate that Duroc sows have overall greater phenotypic PRRSV resilience for reproductive performance than Landrace sows.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Immacolata Scognamiglio ◽  
Maria Teresa Di Martino ◽  
Virginia Campani ◽  
Antonella Virgilio ◽  
Aldo Galeone ◽  
...  

Stable nucleic acid lipid vesicles (SNALPs) encapsulating miR-34a to treat multiple myeloma (MM) were developed. Wild type or completely 2′-O-methylated (OMet) MiR-34a was used in this study. Moreover, SNALPs were conjugated with transferrin (Tf) in order to target MM cells overexpressing transferrin receptors (TfRs). The type of miR-34a chemical backbone did not significantly affect the characteristics of SNALPs in terms of mean size, polydispersity index, and zeta potential, while the encapsulation of an OMet miR-34a resulted in a significant increase of miRNA encapsulation into the SNALPs. On the other hand, the chemical conjugation of SNALPs with Tf resulted in a significant decrease of the zeta potential, while size characteristics and miR-34a encapsulation into SNALPs were not significantly affected. In an experimental model of MM, all the animals treated with SNALPs encapsulating miR-34a showed a significant inhibition of the tumor growth. However, the use of SNALPs conjugated with Tf and encapsulating OMet miR-34a resulted in the highest increase of mice survival. These results may represent the proof of concept for the use of SNALPs encapsulating miR-34a for the treatment of MM.


Plant Disease ◽  
2016 ◽  
Vol 100 (10) ◽  
pp. 2062-2068 ◽  
Author(s):  
Y. M. A. Y. Bandara ◽  
D. K. Weerasooriya ◽  
T. T. Tesso ◽  
C. R. Little

Stalk rots are among the most prevalent and destructive sorghum diseases worldwide. Although experimental evidence is limited, delayed postflowering senescence due to the staygreen trait is accepted as a physiological means of stalk rot resistance. Staygreen has been shown to be correlated with chlorophyll content (as measured by a soil and plant analytical development [SPAD] meter). Field experiments were conducted to test the effects of Fusarium stalk rot and charcoal rot on SPAD readings at three developmental stages, to test whether staygreen genotypes are more resilient to stalk-rot-mediated chlorophyll degradation, and to examine the relationships between SPAD and stalk rot resistance and tolerance when plants were inoculated with causal organisms. Staygreen and nonstaygreen lines (two) and hybrids (two) established in the field were inoculated with Fusarium thapsinum, F. proliferatum, F. andiyazi, and Macrophomina phaseolina at 14 days after flowering. SPAD readings were obtained at soft-dough, hard-dough, and physiological maturity. Most pathogens significantly reduced the SPAD of the genotypes over the mock-inoculated control at three developmental stages. The stalk-rot-resistant and staygreen check line, SC599, showed a remarkable feature of negative senescence from soft dough to physiological maturity under disease pressure. Disease severity was significantly and negatively correlated with SPAD at all developmental stages, revealing the potential impact of the staygreen trait on stalk rot resistance. The difference between control and pathogen-treated total seed weight per panicle (i.e., tolerance) was significantly and positively correlated with the difference between control and pathogen-treated SPAD at physiological maturity, demonstrating the ability of staygreen trait to enhance stalk rot tolerance under disease pressure.


1983 ◽  
Vol 61 (12) ◽  
pp. 3536-3542
Author(s):  
Claude Boisson ◽  
Houria Lahlou

The capacity for variation was studied using 10- to 18-month-old cultures of the main variants of two Moroccan isolates of Verticillium albo-atrum R. et B. (microsclerotial form). The hyaline variants were very stable and never returned to the wild type. The other variants gave rise to new variants which differed even more from the wild type but never reverted. A "mixed" type of variant, hyaline but with patches or sectors resembling the wild type, gave rise to wild or hyaline cultures when subcultured, depending on the conditions of transfer. All other variation tended toward a stronger alteration of sclerogenesis without reversing and an irreversible loss of ability to produce microsclerotia (hyaline cultures).


Sign in / Sign up

Export Citation Format

Share Document