scholarly journals Abiotic Stresses Affect Trichoderma harzianum T39-Induced Resistance to Downy Mildew in Grapevine

2013 ◽  
Vol 103 (12) ◽  
pp. 1227-1234 ◽  
Author(s):  
Benedetta Roatti ◽  
Michele Perazzolli ◽  
Cesare Gessler ◽  
Ilaria Pertot

Enhancement of plant defense through the application of resistance inducers seems a promising alternative to chemical fungicides for controlling crop diseases but the efficacy can be affected by abiotic factors in the field. Plants respond to abiotic stresses with hormonal signals that may interfere with the mechanisms of induced systemic resistance (ISR) to pathogens. In this study, we exposed grapevines to heat, drought, or both to investigate the effects of abiotic stresses on grapevine resistance induced by Trichoderma harzianum T39 (T39) to downy mildew. Whereas the efficacy of T39-induced resistance was not affected by exposure to heat or drought, it was significantly reduced by combined abiotic stresses. Decrease of leaf water potential and upregulation of heat-stress markers confirmed that plants reacted to abiotic stresses. Basal expression of defense-related genes and their upregulation during T39-induced resistance were attenuated by abiotic stresses, in agreement with the reduced efficacy of T39. The evidence reported here suggests that exposure of crops to abiotic stress should be carefully considered to optimize the use of resistance inducers, especially in view of future global climate changes. Expression analysis of ISR marker genes could be helpful to identify when plants are responding to abiotic stresses, in order to optimize treatments with resistance inducers in field.

2010 ◽  
Vol 23 (5) ◽  
pp. 585-592 ◽  
Author(s):  
Lennart Eschen-Lippold ◽  
Simone Altmann ◽  
Sabine Rosahl

Inducing systemic resistance responses in crop plants is a promising alternative way of disease management. To understand the underlying signaling events leading to induced resistance, functional analyses of plants defective in defined signaling pathway steps are required. We used potato, one of the economically most-important crop plants worldwide, to examine systemic resistance against the devastating late blight pathogen Phytophthora infestans, induced by treatment with dl-β-aminobutyric acid (BABA). Transgenic plants impaired in either the 9-lipoxygenase pathway, which produces defense-related compounds, or the 13-lipoxygenase pathway, which generates jasmonic acid–derived signals, expressed wild-type levels of BABA-induced resistance. Plants incapable of accumulating salicylic acid (SA), on the other hand, failed to mount this type of induced resistance. Consistently, treatment of these plants with the SA analog 2,6-dichloroisonicotinic acid restored BABA-induced resistance. Together, these results demonstrate the indispensability of a functional SA pathway for systemic resistance in potato induced by BABA.


2005 ◽  
Vol 18 (8) ◽  
pp. 819-829 ◽  
Author(s):  
Mollah Md. Hamiduzzaman ◽  
Gabor Jakab ◽  
Laurent Barnavon ◽  
Jean-Marc Neuhaus ◽  
Brigitte Mauch-Mani

β-Aminobutyric acid (BABA) was used to induce resistance in grapevine, (Vitis vinifera) against downy mildew (Plasmopara viticola). This led to a strong reduction of mycelial growth and sporulation in the susceptible cv. Chasselas. Comparing different inducers, the best protection was achieved with BABA followed by jasmonic acid (JA), whereas benzo (1,2,3)-thiadiazole-7-carbothionic acid-Smethyl ester (a salicylic acid [SA] analog) and abscisic acid (ABA) treatment did not increase the resistance significantly. Marker genes for the SA and JA pathways showed potentiated expression patterns in BABA-treated plants following infection. The callose synthesis inhibitor 2-deoxy- D-glucose partially suppressed BABA- and JA-induced resistance against P. viticola in Chasselas. Application of the phenylalanine ammonia lyase inhibitor 2-aminoindan-2- phosphonic acid and the lipoxygenase (LOX) inhibitor 5, 8, 11, 14-eicosatetraynoic acid (ETYA) also led to a reduction of BABA-induced resistance (BABA-IR), suggesting that callose deposition as well as defense mechanisms depending on phenylpropanoids and the JA pathways all contribute to BABA-IR. The similar phenotype of BABA- and JA-induced resistance, the potentiated expression pattern of JA-regulated genes (LOX-9 and PR-4) following BABA treatment, and the suppression of BABA-IR with ETYA suggest an involvement of the JA pathway in BABA-IR of grapevine leading to a primed deposition of callose and lignin around the infection sites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Boregowda Nandini ◽  
Hariprasad Puttaswamy ◽  
Ramesh Kumar Saini ◽  
Harischandra Sripathy Prakash ◽  
Nagaraja Geetha

AbstractThe present work is aimed to examine the genetic variability and the distribution pattern of beneficial Trichoderma spp. isolated from rhizosphere samples and their mode of action in improving the plant health. A total of 131 suspected fungi were isolated from the rhizospheric soil and 91 isolates were confirmed as Trichoderma spp. T. asperellum and T. harzianum were found high in the frequency of occurrence. Genetic diversity analysis using RAPD and ISSR revealed the diverse distribution pattern of Trichoderma spp. indicating their capability to adapt to broad agroclimatic conditions. Analysis of genetic diversity using molecular markers revealed intra-species diversity of isolated Trichoderma spp. The frequency of pearl millet (PM) root colonization by Trichoderma spp. was found to be 100%. However, they showed varied results for indole acetic acid, siderophore, phosphate solubilization, β-1,3-glucanase, chitinase, cellulase, lipase, and protease activity. Downy mildew disease protection studies revealed a strong involvement of Trichoderma spp. in direct suppression of the pathogen (mean 37.41) in the rhizosphere followed by inducing systemic resistance. Our findings highlights the probable distribution and diversity profile of Trichoderma spp. as well as narrate the possible utilization of Trichoderma spp. as microbial fungicides in PM cultivation across different agroclimatic zones of India.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 704
Author(s):  
Hussein Al-Ghobari ◽  
Ahmed Z. Dewidar

An increasing scarcity of water, as well as rapid global climate change, requires more effective water conservation alternatives. One promising alternative is rainwater harvesting (RWH). Nevertheless, the evaluation of RWH potential together with the selection of appropriate sites for RWH structures is significantly difficult for the water managers. This study deals with this difficulty by identifying RWH potential areas and sites for RWH structures utilizing geospatial and multi-criteria decision analysis (MCDA) techniques. The conventional data and remote sensing data were employed to set up needed thematic layers using ArcGIS software. The soil conservation service curve number (SCS-CN) method was used to determine surface runoff, centered on which yearly runoff potential map was produced in the ArcGIS environment. Thematic layers such as drainage density, slope, land use/cover, and runoff were allotted appropriate weights to produced RWH potential areas and zones appropriate for RWH structures maps of the study location. Results analysis revealed that the outcomes of the spatial allocation of yearly surface runoff depth ranging from 83 to 295 mm. Moreover, RWH potential areas results showed that the study areas can be categorized into three RWH potential areas: (a) low suitability, (b) medium suitability, and (c) high suitability. Nearly 40% of the watershed zone falls within medium and high suitability RWH potential areas. It is deduced that the integrated MCDA and geospatial techniques provide a valuable and formidable resource for the strategizing of RWH within the study zones.


2017 ◽  
Vol 77 (1) ◽  
pp. 22-28 ◽  
Author(s):  
E. Foelkel ◽  
M. Voss ◽  
L. B. Monteiro ◽  
G. Nishimura

Abstract Entomopathogenic nematodes (EPNs) are a promising alternative to integrated control in many fruit pests. Few studies were made on the relationship of Anastrepha fraterculus natural population with native EPNs population and other biotic and abiotic factors. The aim of this work was to verify the occurrence of endemic nematodes in an apple orchard, concerning environmental conditions and technical procedure, and access isolates virulence to A. fraterculus larvae. The experiment was conducted during a year taking monthly soil samples from an apple orchard, with and without fallen fruits just above the soil. Samples were baited with Tenebrium molitor and A. fraterculus larvae in laboratory. Canopy and fallen fruits were sampled to access the pest infestation. Seventy three EPN isolates were captured, in 23.2% soil samples, more with T. molitor than with A. fraterculus baits. From the 20 isolates tested against A. fraterculus, only five were pathogenic, and they were identified as Oscheius sp. The nematodes were captured during all seasons in a similar frequency. Soil and weather conditions, presence of fruit over the orchard soil, and A. fraterculus pupae in the fruits had no significant influence on the capture. As a conclusion, nematodes of the genera Oscheius are found in an apple orchard of Porto Amazonas constantly along the year, independently of fluctuations in A. fraterculus population, climate conditions and presence of fruit over the soil. Some of the isolates are pathogenic to A. fraterculus.


PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0168850 ◽  
Author(s):  
Jawadayn Talib Alkooranee ◽  
Tamarah Raad Aledan ◽  
Ali Kadhim Ali ◽  
Guangyuan Lu ◽  
Xuekun Zhang ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
Christine Becker ◽  
Nicolas Desneux ◽  
Lucie Monticelli ◽  
Xavier Fernandez ◽  
Thomas Michel ◽  
...  

In contrast to constitutively emitted plant volatiles (PV), herbivore-induced plant volatiles (HIPV) are specifically emitted by plants when afflicted with herbivores. HIPV can be perceived by parasitoids and predators which parasitize or prey on the respective herbivores, including parasitic hymenoptera. HIPV act as signals and facilitate host/prey detection. They comprise a blend of compounds: main constituents are terpenoids and “green leaf volatiles.” Constitutive emission of PV is well known to be influenced by abiotic factors like temperature, light intensity, water, and nutrient availability. HIPV share biosynthetic pathways with constitutively emitted PV and might therefore likewise be affected by abiotic conditions. However, the effects of abiotic factors on HIPV-mediated biotic interactions have received only limited attention to date. HIPV being influenced by the plant’s growing conditions could have major implications for pest management. Quantitative and qualitative changes in HIPV blends may improve or impair biocontrol. Enhanced emission of HIPV may attract a larger number of natural enemies. Reduced emission rates or altered compositions, however, may render blends imperceptible to parasitoides and predators. Predicting the outcome of these changes is highly important for food production and for ecosystems affected by global climate change.


2021 ◽  
pp. 326-337
Author(s):  
Andrés Gatica-Arias ◽  
Jorge Rodríguez-Matamoros ◽  
Ana Abdelnour-Esquivel ◽  
Marta Valdez-Melara

Abstract Low genetic diversity and autogamous reproduction limit genetic improvement of Coffea arabica L. As a consequence, susceptibility to biotic and abiotic stresses increases. Induced mutagenesis is an alternative strategy for increasing genetic variability and for the development of varieties tolerant or resistant to biotic and abiotic factors. In the present study, the effect of three mutagenic agents (NaN3, EMS and 60Co gamma-rays) on survival of Arabica coffee zygotic embryos was evaluated. The zygotic embryos were immersed for 10 min in a solution of NaN3 (0, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0 and 20.0 mM) or for 2 h in a solution of EMS (0, 0.5, 1, 1.5, 2, 4 and 6% v/v) or irradiated with 0, 20, 40, 60, 80 or 100 Gy. As the concentration or dose of the applied mutagen increased, survival decreased. The LD50 values for sodium azide, EMS and 60Co were 12.5 mM (51.6%), 1% v/v (48.3%) and 40 Gy (50.0%), respectively. Our results indicated that coffee zygotic embryos are suitable for chemical and physical mutagenesis and this offers an alternative for the genetic improvement of agriculturally important traits in coffee.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1320 ◽  
Author(s):  
Velasco-Muñoz ◽  
Aznar-Sánchez ◽  
Batlles-delaFuente ◽  
Fidelibus

Within a context of scarce water resources for agriculture, rainwater harvesting constitutes a promising alternative that has been studied by different disciplines in recent years. This article analyses the dynamics of global research on rainwater harvesting for agricultural irrigation over the last two decades. To do this, qualitative systematic analysis and quantitative bibliometric analysis have been carried out. The results reveal that this line of research is becoming increasingly important within research on irrigation. Environmental sciences and agricultural and biological sciences are the most relevant subject areas. Agricultural Water Management, Physics and Chemistry of the Earth, and Irrigation and Drainage are the journals that have published the most articles on the subject. India, China, the United States (USA), South Africa, and the Netherlands are the countries that lead this line of research. Although significant progress has been made in this subject area, it is necessary to increase the number of studies on the capacity of rainwater harvesting systems to cover irrigation needs in different farming contexts, the factors that determine their adoption by farmers, the economic and financial feasibility of their implementation, and their contribution to mitigating global climate change.


Sign in / Sign up

Export Citation Format

Share Document