scholarly journals Oxidative stress signaling in response to CD 4+ T cells stimulated via placental ischemia play an important role in hypertension during preeclampsia (860.14)

2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Jeremy Scott ◽  
Kedra Wallace ◽  
Denise Cornelius ◽  
Lorena Amaral ◽  
Janae Moseley ◽  
...  
2015 ◽  
Vol 309 (10) ◽  
pp. R1243-R1250 ◽  
Author(s):  
Denise C. Cornelius ◽  
Javier Castillo ◽  
Justin Porter ◽  
Lorena M. Amaral ◽  
Nathan Campbell ◽  
...  

Preeclampsia (PE) is associated with altered immune activation during pregnancy. We have previously shown that adoptive transfer of CD4+ T cells from the reduced uterine perfusion pressure (RUPP) rat model of PE increases blood pressure, oxidative stress (ROS), and inflammation in normal pregnant recipient rats. The objective of this study was to determine if blockade of communication via the CD40-CD40 ligand (CD40L) interaction between placental ischemia-induced CD4+ T cells with endogenous normal pregnant (NP) cells would improve pathophysiology that was previously observed in NP recipient rats of RUPP CD4+ T cells. Splenic CD4+ T lymphocytes were magnetically separated, incubated with 2.5 μg/ml anti-CD40 ligand (αCD40L) overnight, and transferred into NP rats on day 12 of gestation (NP+RUPP CD4+ T+anti-CD40L). On day 19 of gestation, blood pressure (MAP), blood, and tissues were collected. MAP was 99 ± 2 in NP ( n = 13), 116 ± 4 in NP+RUPP CD4+ T cells ( n = 7; P < 0.01); MAP only increased to 104 ± 2 in NP+RUPP CD4+ T cells+CD40L ( n = 24) ( P < 0.05 vs. NP+RUPP CD4+ T cells). Mechanisms of hypertension in response to RUPP CD4+ T cells include endothelin-1 (ET-1), ROS, and angiotensin II type I receptor (AT1-AA) were analyzed. Inhibition of CD40L binding reduced placental ET-1 to 2.3-fold above NP rats and normalized placental ROS from 318.6 ± 89 in NP+RUPP CD4+ T cells ( P < 0.05) to 118.7 ± 24 in NP+RUPP CD4+ T+anti-CD40L ( P < 0.05). AT1-AA was also normalized with inhibition of CD40L. These data suggest that placental ischemia-induced T-cell communication via the CD40L is one important mechanism leading to much of the pathophysiology of PE.


APOPTOSIS ◽  
2016 ◽  
Vol 21 (9) ◽  
pp. 1019-1032 ◽  
Author(s):  
Cristian Ruiz-Moreno ◽  
Marlene Jimenez-Del-Rio ◽  
Ligia Sierra-Garcia ◽  
Betty Lopez-Osorio ◽  
Carlos Velez-Pardo

2021 ◽  
Vol 10 (21) ◽  
pp. 5063
Author(s):  
Ramana Vaka ◽  
Evangeline Deer ◽  
Mark Cunningham ◽  
Kristen M. McMaster ◽  
Kedra Wallace ◽  
...  

Preeclampsia (PE) is characterized by new onset hypertension during pregnancy and is associated with oxidative stress, placental ischemia, and autoantibodies to the angiotensin II type I receptor (AT1-AA). Mitochondrial (mt) dysfunction in PE and various sources of oxidative stress, such as monocytes, neutrophils, and CD4 + T cells, have been identified as important players in the pathophysiology of PE. We have established the significance of AT1-AA, TNF-α, and CD4 + T cells in causing mitochondrial (mt) dysfunction in renal and placental tissues in pregnant rats. Although the role of mt dysfunction from freshly isolated intact placental mitochondria has been compared in human PE and normally pregnant (NP) controls, variations among preterm PE or term PE have not been compared and mechanisms contributing to mt ROS during PE are unclear. Therefore, we hypothesized PE placentas would exhibit impaired placental mt function, which would be worse in preterm PE patients than in those of later gestational ages. Immediately after delivery, PE and NP patient’s placentas were collected, mt were isolated and mt respiration and ROS were measured. PE patients at either < or >34 weeks gestational age (GA) exhibited elevated blood pressure and decreased placental mt respiration rates (state 3 and maximal). Patients delivering at >34 weeks exhibited decreased Complex IV activity and expression. Placental mtROS was significantly reduced in both PE groups, compared to NP placental mitochondria. Collectively, the study demonstrates that PE mt dysfunction occurs in the placenta, with mtROS being lower than that seen in NP controls. These data indicate why antioxidants, as a potential target or new therapeutic agent, may not be ideal in treating the oxidative stress associated with PE.


Hypertension ◽  
2014 ◽  
Vol 64 (5) ◽  
pp. 1151-1158 ◽  
Author(s):  
Kedra Wallace ◽  
Denise C. Cornelius ◽  
Jeremy Scott ◽  
Judith Heath ◽  
Janae Moseley ◽  
...  

2021 ◽  
Vol 320 (1) ◽  
pp. F47-F54
Author(s):  
Evangeline Deer ◽  
Kristin E. Reeve ◽  
Lorena Amaral ◽  
Venkata Ramana Vaka ◽  
Michael Franks ◽  
...  

The reduced uterine perfusion pressure (RUPP) rat model and normal pregnant (NP) rat recipients of RUPP CD4+ T cells recapitulate many characteristics of preeclampsia such as hypertension and oxidative stress. We have shown an important hypertensive role for natural killer (NK) cells to cause mitochondrial dysfunction in RUPP rats; however, the role for RUPP CD4+ T cells to stimulate NK cells is unknown. Therefore, we hypothesized that RUPP-induced CD4+ T cells activate NK cells to cause mitochondrial dysfunction/reactive oxygen species (ROS) as mechanisms of hypertension during pregnancy. We tested our hypothesis by adoptive transfer of RUPP CD4+ T cells into NP rats or by inhibiting the activation of RUPP CD4+ T cells with Orencia (abatacept) and examining hypertension, NK cells, and mitochondrial function. RUPP was performed on gestation day (GD) 14, and splenic CD4+ T cells were isolated on GD 19 and injected into NP rats on GD 13. In a separate group of rats, Orencia was infused and the RUPP procedure was performed. Mean arterial pressure and placental and renal mitochondrial ROS increased in RUPP ( n = 7, P < 0.05) and NP + RUPP CD4+ T-cell recipients ( n = 13, P < 0.05) compared with control NP ( n = 7) and NP + NP CD4+ T-cell recipients ( n = 5) but was reduced with Orencia ( n = 13, P < 0.05). Placental and renal respiration was reduced in RUPP ( n = 6, P < 0.05) and NP + RUPP CD4+ T-cell recipients ( n = 6, state 3 P < 0.05) compared with NP ( n = 5) and NP + NP CD4+ T-cell recipients ( n = 5) but improved with Orencia ( n = 9, n = 8 P < 0.05). These data indicate that CD4+ T cells, independent of NK cells, cause mitochondrial dysfunction/ROS contributing to hypertension in response to placental ischemia during pregnancy.


1996 ◽  
Vol 70 (9) ◽  
pp. 6502-6507 ◽  
Author(s):  
A Ehret ◽  
M O Westendorp ◽  
I Herr ◽  
K M Debatin ◽  
J L Heeney ◽  
...  

2009 ◽  
Vol 296 (3) ◽  
pp. H689-H697 ◽  
Author(s):  
Karen Y. Stokes ◽  
LeShanna Calahan ◽  
Candiss M. Hamric ◽  
Janice M. Russell ◽  
D. Neil Granger

Hypercholesterolemia is associated with phenotypic changes in endothelial cell function that lead to a proinflammatory and prothrombogenic state in different segments of the microvasculature. CD40 ligand (CD40L) and its receptor CD40 are ubiquitously expressed and mediate inflammatory responses and platelet activation. The objective of this study was to determine whether CD40/CD40L, in particular T-cell CD40L, contributes to microvascular dysfunction induced by hypercholesterolemia. Intravital microscopy was used to quantify blood cell adhesion in cremasteric postcapillary venules, endothelium-dependent vasodilation responses in arterioles, and microvascular oxidative stress in wild-type (WT) C57BL/6, CD40-deficient (−/−), CD40L−/−, or severe combined immune deficient (SCID) mice placed on a normal (ND) or high-cholesterol (HC) diet for 2 wk. WT-HC mice exhibited an exaggerated leukocyte and platelet recruitment in venules and impaired vasodilation responses in arterioles compared with ND counterparts. A deficiency of CD40, CD40L, or lymphocytes attenuated these responses to HC. The HC phenotype was rescued in CD40L−/− and SCID mice by a transfer of WT T cells. Bone marrow chimeras revealed roles for both vascular- and blood cell-derived CD40 and CD40L in the HC-induced vascular responses. Hypercholesterolemia induced an oxidative stress in both arterioles and venules of WT mice, which was abrogated by either CD40 or CD40L deficiency. The transfer of WT T cells into CD40L−/− mice restored the oxidative stress. These results implicate CD40/CD40L interactions between circulating cells and the vascular wall in both the arteriolar and venular dysfunction elicited by hypercholesterolemia and identify T-cell-associated CD40L as a key mediator of these responses.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Anna K. Lundberg ◽  
Rosanna W. S. Chung ◽  
Louise Zeijlon ◽  
Gustav Fernström ◽  
Lena Jonasson

Abstract Background Inflammation and oxidative stress form a vicious circle in atherosclerosis. Oxidative stress can have detrimental effects on T cells. A unique subset of CD4+ T cells, known as regulatory T (Treg) cells, has been associated with atheroprotective effects. Reduced numbers of Treg cells is a consistent finding in patients with chronic coronary syndrome (CCS). However, it is unclear to what extent these cells are sensitive to oxidative stress. In this pilot study, we tested the hypothesis that oxidative stress might be a potential contributor to the Treg cell deficit in CCS patients. Methods Thirty patients with CCS and 24 healthy controls were included. Treg (CD4+CD25+CD127−) and conventional T (CD4+CD25−, Tconv) cells were isolated and treated with increasing doses of H2O2. Intracellular ROS levels and cell death were measured after 2 and 18 h, respectively. The expression of antioxidant genes was measured in freshly isolated Treg and Tconv cells. Also, total antioxidant capacity (TAC) was measured in fresh peripheral blood mononuclear cells, and oxidized (ox) LDL/LDL ratios were determined in plasma. Results At all doses of H2O2, Treg cells accumulated more ROS and exhibited higher rates of death than their Tconv counterparts, p < 0.0001. Treg cells also expressed higher levels of antioxidant genes, including thioredoxin and thioredoxin reductase-1 (p < 0.0001), though without any differences between CCS patients and controls. Tconv cells from CCS patients were, on the other hand, more sensitive to oxidative stress ex vivo and expressed more thioredoxin reductase-1 than Tconv cells from controls, p < 0.05. Also, TAC levels were lower in patients, 0.97 vs 1.53 UAE/100 µg, p = 0.001, while oxLDL/LDL ratios were higher, 29 vs 22, p = 0.006. Conclusion Treg cells isolated from either CCS patients or healthy controls were all highly sensitive to oxidative stress ex vivo. There were signs of oxidant-antioxidant imbalance in CCS patients and we thus assume that oxidative stress may play a role in the reduction of Treg cells in vivo.


2020 ◽  
Vol 175 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Nivedita Banerjee ◽  
Hui Wang ◽  
Gangduo Wang ◽  
M Firoze Khan

Abstract Trichloroethene (trichloroethylene, TCE) and one of its reactive metabolites dichloroacetyl chloride (DCAC) are associated with the induction of autoimmunity in MRL+/+ mice. Although oxidative stress plays a major role in TCE-/DCAC-mediated autoimmunity, the underlying molecular mechanisms still need to be delineated. Nuclear factor (erythroid-derived 2)-like2 (Nrf2) is an oxidative stress-responsive transcription factor that binds to antioxidant responsive element (ARE) and provides protection by regulating cytoprotective and antioxidant gene expression. However, the potential of Nrf2 in the regulation of TCE-/DCAC-mediated autoimmunity is not known. This study thus focused on establishing the role of Nrf2 and consequent inflammatory responses in TCE-/DCAC-mediated autoimmunity. To achieve this, we pretreated Kupffer cells (KCs) or T cells with/without tert-butylhydroquinone (tBHQ) followed by treatment with DCAC. In both KCs and T cells, DCAC treatment significantly downregulated Nrf2 and HO-1 expression along with induction of Keap-1 and caspase-3, NF-κB (p65), TNF-α, and iNOS, whereas pretreatment of these cells with tBHQ attenuated these responses. The in vitro findings were further verified in vivo by treating female MRL+/+ mice with TCE along with/without sulforaphane. TCE exposure in mice also led to reduction in Nrf2 and HO-1 but increased phospho-NF-κB (p-p65) and iNOS along with increased anti-dsDNA antibodies. Interestingly, sulforaphane treatment led to amelioration of TCE-mediated effects, resulting in Nrf2 activation and reduction in inflammatory and autoimmune responses. Our results show that TCE/DCAC mediates an impairment in Nrf2 regulation. Attenuation of TCE-mediated autoimmunity via activation of Nrf2 supports that antioxidants sulforaphane/tBHQ could be potential therapeutic agents for autoimmune diseases.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Tian Tian ◽  
Ziling Wang ◽  
Jinhua Zhang

Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease whose incidence has risen worldwide in recent years. Accumulating evidence shows that oxidative stress plays an essential role in the pathogenesis and progression of IBD. This review highlights the generation of reactive oxygen species (ROS) and antioxidant defense mechanisms in the gastrointestinal (GI) tract, the involvement of oxidative stress signaling in the initiation and progression of IBD and its relationships with genetic susceptibility and the mucosal immune response. In addition, potential therapeutic strategies for IBD that target oxidative stress signaling are reviewed and discussed. Though substantial progress has been made in understanding the role of oxidative stress in IBD in humans and experimental animals, the underlying mechanisms are still not well defined. Thus, further studies are needed to validate how oxidative stress signaling is involved in and contributes to the development of IBD.


Sign in / Sign up

Export Citation Format

Share Document