scholarly journals Experiments on skeletal growth and development in vitro in relation to the problem of avian phokomelia

The experiments to be reported in the following pages were suggested by observations made by one of us on the so-called Creeper fowl. Creeper chickens are characterized by a disproportionate shortness of the long bones of the extremities. Histological study has shown that Creeper chickens belong in the same category as the disproportionate dwarfism of mammals known as chondrodystrophy or achondroplasia (Landauer, 1931) . The Creeper characters are inherited as a Mendelian dominant and are lethal in homozygous condition (Landauer and Dunn, 1930). Homozygous Creeper embryos generally die after about 72 hours of incubation, but in rare cases they survive beyond this stage and continue development up to nearly hatching time. These late stages of homozygous Creeper embryos exhibit striking malformations of the extremities which are known as phokomelia (Landauer, 1933). A study of the early embryonic development of homozygous Creeper embryos (Landauer, 1932) led to the conclusion that the effects of the Creeper mutation are not brought about by specific gene action on those body parts which later show deformities, but by a general retardation of body growth at a definite stage of development. This conclusion was strengthened by a detailed comparison of embryonic and post-natal bone growth in heterozygous Creeper and normal chickens (Landauer, 1934). All evidence which so far has been obtained in this work points to the conclusion that the characteristic traits of heterozygous as well as homozygous Creeper chicks are produced by an unspecific retardation of development at a time when formation of the buds of the extremities (and of the head which in homozygous embryos also shows deformities later on) are proceeding at a particularly rapid rate, thereby causing specific disturbances in the differentiation of these parts. It seemed to us that it should be possible to put these conclusions to an experimental test. The most promising way of approach appeared to be an attempt to produce in vitro the extreme abnormalities of bone formation shown by the extremities of phokomelic homozygous Creeper embryos. These abnormalities chiefly consist in (1) a general retardation of cartilage differentiation; (2) lack of bone formation; and (3) frequent partial fusion of ulna and radius on the one hand, tibia and fibula on the other, or presence of only one bone in these segments instead of two.

Author(s):  
Lizhi Han ◽  
Song Gong ◽  
Ruoyu Wang ◽  
Shaokai Liu ◽  
Bo Wang ◽  
...  

Steroid-induced osteonecrosis of femoral head (SONFH) is a common and serious complication caused by long-term and/or excessive use of glucocorticoids (GCs). The decreased activity and abnormal differentiation of bone marrow mesenchymal stem cells (BMSCs) are considered to be one of the major reasons for the onset and progression of this disease. Periostin (POSTN) is a matricellular protein which plays an important role in regulating osteoblast function and bone formation. Sclerostin (SOST) is a secreted antagonist of Wnt signaling that is mainly expressed in osteocytes to inhibit bone formation. However, the exact role of POSTN and SOST in SONFH has not been reported yet. Therefore, we detected the differential expression of POSTN and SOST in BMSCs of SONFH Group patients, and Control Group was patients with traumatic ONFH (TONFH) and developmental dysplasia of the hip (DDH). Furthermore, we used lentiviral transfection to knockdown POSTN expression in BMSCs of patients with SONFH to study the effect of POSTN knockdown on the SOST expression and osteogenic differentiation of BMSCs. The results indicated that the endogenous expression of POSTN and SOST in BMSCs of SONFH Group was upregulated, compared with Control Group. POSTN was upregulated gradually while SOST was downregulated gradually at days 0, 3, and 7 of osteogenic differentiation of BMSCs in Control Group. Contrarily, POSTN was gradually downregulated while SOST was gradually upregulated during osteogenic differentiation of BMSCs in SONFH Group. This could be due to increased expression of SOST in BMSCs, which was caused by excessive GCs. In turn, the increased expression of POSTN in BMSCs may play a role in antagonizing the continuous rising of SOST during the osteogenic differentiation of BMSCs in patients with SONFH. POSTN knockdown significantly attenuated osteo-specific gene expression, alkaline phosphatase activity, and calcium nodule formation in vitro; thus inhibiting the osteogenic differentiation of BMSCs in patients with SONFH. Besides, POSTN knockdown upregulated SOST expression, increased GSK-3β activity, and downregulated β-catenin. These findings suggest that POSTN have an essential role in regulating the expression of SOST and osteogenic differentiation of BMSCs in patients with SONFH, and POSTN knockdown suppresses osteogenic differentiation by upregulating SOST and partially inactivating Wnt/β-catenin signaling pathway. Therefore, targeting POSTN and SOST may serve as a promising therapeutic target for the prevention and treatment of SONFH.


2021 ◽  
Author(s):  
Ao Chen ◽  
Xiaoting Li ◽  
Jingyu Zhao ◽  
Jiawen Zhou ◽  
Chunfeng Xie ◽  
...  

Abstract Background: Chronic alcohol is one of the leading risk factors for male osteoporosis . Angiogenesis and osteogenesis coupled by type-H vessels coordinate the biological process of bone homeostasis to prevent osteopenia. It is unknown whether alcohol inhibits type-H-vessel-dependent bone formation. Aims: This study aimed to determine whether alcohol hampers proliferation and promotes aging of endothelial cells of type-H vessels, and whether alcohol inhibits the differentiation of bone marrow-mesenchymal stem cells (BM-MSCs) into osteoblasts through reducing the number and secretion of endothelial cells in type-H vessels. Materials and Methods: Two-month-old mice fed with alcohol liquid diet (28% of calories) or normal liquid diet for two months. The tibias were isolated and detected with X-ray and micro-CT. Paraffin-embedded or frozen tibial sections were prepared and used for immunohistochemical or immunofluorescence staining respectively in vivo . Human Umbilical Vein Endothelial Cells (HUVECs) were treated with different-concentrated alcohol for 12 hours. The conditioned medium of the above HUVECs cells was collected to culture human BM-MSCs, which were induced to differentiate into osteoblasts in vitro . Results: The alcoholic diet retarded the bone growth and lead to osteoporosis, impaired bone formation of osteoblasts, and decreased CD31 hi EMCN hi type-H-vessel formation through inhibiting proliferation and promoting aging of endothelial cells in mice. Alcohol treatment obviously increased the expression of p16, while significantly decreased the expression of Bmi-1, CDK6, Cyclin D, E2F1 and BMP2 compared to vehicle. Alcohol inhibited the differentiation of BM-MSCs into osteoblasts through reducing the BMP2 secretion of endothelial cells in type-H vessels. Conclusions: Alcoholic diet impaired CD31 hi EMCN hi type-H-vessel formation through inhibiting proliferation and promoting aging of endothelial cells via Bmi-1/p16 signaling, and inhibited the differentiation of BM-MSCs into osteoblasts through reducing the BMP2 secretion of endothelial cells in type-H vessels. It provides a basis for developing a new treatment strategy targeting aging endothelial cells of type-H-vessel to prevent alcoholic osteopenia.


1999 ◽  
Vol 4 (6) ◽  
pp. 363-371 ◽  
Author(s):  
Susan E. Hahn ◽  
Mei Yu ◽  
Sylvia Tong ◽  
Anja A.T. Geisterfer-Lowrance ◽  
Dennis Sindrey ◽  
...  

Although parathyroid hormone (PTH) has the ability to stimulate bone growth in both rats and humans, its mechanism of action is not fully understood at the molecular level. An in vitro marker that reflects the in vivo anabolic actions of PTH would facilitate the discovery of small-molecule compounds that stimulate bone growth. We therefore compared the patterns of gene expression in three cell lines treated with PTH. The levels of c-fos, collagenase, interleukin-6 (IL-6), and collagen mRNA were determined by reverse transcription-polymerase chain reaction (RT-PCR) in three osteoblast-like cell lines. The most responsive marker was c-fos, which was induced 5-10-fold after 1 h of PTH treatment in the UMR106-01 cell line. Because it is a critical early response gene in bone growth, we investigated the possibility of using c-fos stimulation as a method to screen for compounds that can stimulate bone formation. A highly sensitive, medium-throughput RT-PCR assay for c-fos mRNA expression was established using the Taqman™ Detection System (Perkin Elmer, Mississauga, Ontario). Cells were treated with a series of compounds to determine the specificity of c-fos stimulation. Of the compounds tested, only PTH, prostaglandin E2, 8-bromo-cAMP, and forskolin induced c-fos mRNA levels, indicating that this assay was specific for compounds that are known to induce cAMP and stimulate bone growth. These results indicate that a simple in vitro assay for c-fos may be a reliable method for the screening of compounds that stimulate bone growth in vivo.


2021 ◽  
Vol 285 ◽  
pp. 02033
Author(s):  
E. G. Savenko ◽  
Zh. M. Mukhina ◽  
V. A. Glazyrina ◽  
L. A. Shundrina

The aim of the study was to study the development of rice microspores in anther culture in vitro, study the structure of androclinic callus to identify cyto-embryological features of the formation of morphogenic structures in anther culture, obtain doubled rice haploids (Oryza sativa L.) and accelerate the development of valuable breeding material with desired properties. Within the framework of this study, the results of a cyto-histological study of rice haploid androgenesis in vitro were obtained, which indicate that it is induced under the influence of phytohormones from rice anther microspores at the mononuclear or early binuclear stage of development. The abnormal development of microspores on nutrient media with phytohormone 2,4-D was traced, in which nuclei, having lost their characteristic functions, acquired the ability to unlimited division and growth with the formation of microcallus. The morphological structure of calli was assessed. The main morphotypes of callus tissues and the pathways of morphogenesis, leading to the formation of androgenic structures, up to full-fledged regenerant plants, were identified. Homozygous androgenic lines based on F1 and BC1 - rice generations obtained in the course of hybridization and backcrossing between Chinese samples carrying blast resistance genes and Russian accessiond were rapidly developed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wida Razawy ◽  
Celso H. Alves ◽  
Marijke Koedam ◽  
Patrick S. Asmawidjaja ◽  
Adriana M. C. Mus ◽  
...  

AbstractThe IL-23 receptor (IL-23R) signaling pathway has pleiotropic effects on the differentiation of osteoclasts and osteoblasts, since it can inhibit or stimulate these processes via different pathways. However, the potential role of this pathway in the regulation of bone homeostasis remains elusive. Therefore, we studied the role of IL-23R signaling in physiological bone remodeling using IL-23R deficient mice. Using µCT, we demonstrate that 7-week-old IL-23R−/− mice have similar bone mass as age matched littermate control mice. In contrast, 12-week-old IL-23R−/− mice have significantly lower trabecular and cortical bone mass, shorter femurs and more fragile bones. At the age of 26 weeks, there were no differences in trabecular bone mass and femur length, but most of cortical bone mass parameters remain significantly lower in IL-23R−/− mice. In vitro osteoclast differentiation and resorption capacity of 7- and 12-week-old IL-23R−/− mice are similar to WT. However, serum levels of the bone formation marker, PINP, are significantly lower in 12-week-old IL-23R−/− mice, but similar to WT at 7 and 26 weeks. Interestingly, Il23r gene expression was not detected in in vitro cultured osteoblasts, suggesting an indirect effect of IL-23R. In conclusion, IL-23R deficiency results in temporal and long-term changes in bone growth via regulation of bone formation.


2014 ◽  
Vol 926-930 ◽  
pp. 1136-1139
Author(s):  
Feng Jin Guo ◽  
Rong Jiang ◽  
Xiao Feng Han

We previously reported that transcription factor XBP1S is upregulated during chondrocyte differentiation and demonstrates the temporal and spatial expression pattern during skeletal development. Herein, we found that XBP1S stimulates chondrocyte differentiation from mesenchymal stem cells in vitro and endochondral ossification ex vivo. In addition, XBP1S activates granulin-epithelin precursor (GEP), a growth factor known to stimulate chondrogenesis, then enhances GEP-stimulated chondrogenesis and endochondral bone formation. Collectively, these findings demonstrate that XBP1S positively regulates endochondral bone formation by activating GEP chondrogenic growth factor.


2019 ◽  
Vol 7 (4) ◽  
pp. 1281-1285 ◽  
Author(s):  
R. Fraioli ◽  
S. Neubauer ◽  
F. Rechenmacher ◽  
B. M. Bosch ◽  
K. Dashnyam ◽  
...  

Integrin selective peptidomimetics tune stem cell behavior in vitro and improve bone formation in rat calvarial defects.


Author(s):  
Hydar Muhsin Khalfa ◽  
Adnan Albideri ◽  
Haider Salih Jaffat

The integumentary system covers the surface of the embryo (skin) and its specialized skin structures including hair, nails, sweat glands, mammary glands and teeth. During fetal skin development, the epidermis changes from a single layer of ectodermal cells at 7–8 days of gestation into a more apparent stratified, keratinized epithelium at 22–24 weeks. The aim of the study is to identify the histological and cytological changes that take place during neonatal and adult epidermis development. Human neonatal and adult samples were obtained from fully informed, consenting parent or releatives from Al-hilla mortary / Iraq. Neonatal samples were obtained from neonates after sudden deaths from maternity wards. Anatomical Sites included abdomen, forehead, back, shoulder and feet sole. A totoal of 15 neonates and 10 mature adults were used for this study. Fresh tissues were sectioned using a freezing cryostat. Tissues were sectioned at 5µm in -24°C and collected on microscopic slides. Slides were allowed to air dry for 30 min prior to hematoxyline and eosin staining. Tissues were also photographed using scanning electron microscopy SEM. Cytological measurements were taken using image j software and data was analysed using graph prism. Various cytological and histological changes takes place during neonatal and adult and epidermis development. Our study shows the stages of fair follicule formation as well as number of nucleated layers present at each stage of development and at different anatomical sites. Major histological changes takes places during the transition frm a neonate to a mature adult including the number of basal cells and epidermal thickness depending on the anatomical site.


2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document