Replication of the bacterial chromosome

1966 ◽  
Vol 164 (995) ◽  
pp. 258-266 ◽  

In this paper I shall confine myself to only one aspect of chromosome replication in bacteria: its control and co-ordination with growth and cell division. The nature of the problem to be considered is made clear by two features of chromosome replication in Escherichia coli , First, under conditions of rapid growth, involving generation times of up to about one hour, DNA synthesis is essentially continuous; there is no detectable resting period corresponding to the G period typically found in higher organisms. Secondly, in glucose minimal media, as the data of Cairns (1963) and others have shown, a single replication point, or growth point, traverses the length of the chromosome during each cycle of replication. It follows that, although the rate of replication in E. coli might be determined by the supply of DNA precursors, the maintenance of the proper sequence of events cannot be controlled in this way since in a system in which DNA synthesis is continuous these precursors must be present at all times. Under the conditions mentioned above in E. coli , for example, the cell must have some means of ensuring that a new cycle of replication is not initiated until the previous one is complete. Consequently the important point of control of replication in bacteria must be over the initiation of replication rather than replication itself.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaitlin S. Witherell ◽  
Jason Price ◽  
Ashok D. Bandaranayake ◽  
James Olson ◽  
Douglas R. Call

AbstractMultidrug-resistant bacteria are a growing global concern, and with increasingly prevalent resistance to last line antibiotics such as colistin, it is imperative that alternative treatment options are identified. Herein we investigated the mechanism of action of a novel antimicrobial peptide (CDP-B11) and its effectiveness against multidrug-resistant bacteria including Escherichia coli #0346, which harbors multiple antibiotic-resistance genes, including mobilized colistin resistance gene (mcr-1). Bacterial membrane potential and membrane integrity assays, measured by flow cytometry, were used to test membrane disruption. Bacterial growth inhibition assays and time to kill assays measured the effectiveness of CDP-B11 alone and in combination with colistin against E. coli #0346 and other bacteria. Hemolysis assays were used to quantify the hemolytic effects of CDP-B11 alone and in combination with colistin. Findings show CDP-B11 disrupts the outer membrane of E. coli #0346. CDP-B11 with colistin inhibits the growth of E. coli #0346 at ≥ 10× lower colistin concentrations compared to colistin alone in Mueller–Hinton media and M9 media. Growth is significantly inhibited in other clinically relevant strains, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In rich media and minimal media, the drug combination kills bacteria at a lower colistin concentration (1.25 μg/mL) compared to colistin alone (2.5 μg/mL). In minimal media, the combination is bactericidal with killing accelerated by up to 2 h compared to colistin alone. Importantly, no significant red blood hemolysis is evident for CDP-B11 alone or in combination with colistin. The characteristics of CDP-B11 presented here indicate that it can be used as a potential monotherapy or as combination therapy with colistin for the treatment of multidrug-resistant infections, including colistin-resistant infections.


2008 ◽  
Vol 190 (18) ◽  
pp. 6048-6059 ◽  
Author(s):  
Carine Robichon ◽  
Glenn F. King ◽  
Nathan W. Goehring ◽  
Jon Beckwith

ABSTRACT Bacterial cell division is mediated by a set of proteins that assemble to form a large multiprotein complex called the divisome. Recent studies in Bacillus subtilis and Escherichia coli indicate that cell division proteins are involved in multiple cooperative binding interactions, thus presenting a technical challenge to the analysis of these interactions. We report here the use of an E. coli artificial septal targeting system for examining the interactions between the B. subtilis cell division proteins DivIB, FtsL, DivIC, and PBP 2B. This technique involves the fusion of one of the proteins (the “bait”) to ZapA, an E. coli protein targeted to mid-cell, and the fusion of a second potentially interacting partner (the “prey”) to green fluorescent protein (GFP). A positive interaction between two test proteins in E. coli leads to septal localization of the GFP fusion construct, which can be detected by fluorescence microscopy. Using this system, we present evidence for two sets of strong protein-protein interactions between B. subtilis divisomal proteins in E. coli, namely, DivIC with FtsL and DivIB with PBP 2B, that are independent of other B. subtilis cell division proteins and that do not disturb the cytokinesis process in the host cell. Our studies based on the coexpression of three or four of these B. subtilis cell division proteins suggest that interactions among these four proteins are not strong enough to allow the formation of a stable four-protein complex in E. coli in contrast to previous suggestions. Finally, our results demonstrate that E. coli artificial septal targeting is an efficient and alternative approach for detecting and characterizing stable protein-protein interactions within multiprotein complexes from other microorganisms. A salient feature of our approach is that it probably only detects the strongest interactions, thus giving an indication of whether some interactions suggested by other techniques may either be considerably weaker or due to false positives.


2007 ◽  
Vol 90 (2-3) ◽  
pp. 59-72 ◽  
Author(s):  
Medhatm Khattar ◽  
Issmat I. Kassem ◽  
Ziad W. El-Hajj

In 1993, William Donachie wrote “The success of molecular genetics in the study of bacterial cell division has been so great that we find ourselves, armed with much greater knowledge of detail, confronted once again with the same naive questions that we set to answer in the first place”1. Indeed, attempts to answer the apparently simple question of how a bacterial cell divides have led to a wealth of new knowledge, in particular over the past decade and a half. And while some questions have been answered to a great extent since the early reports of isolation of division mutants of Escherichia coli2,3, some key pieces of the puzzle remain elusive. In addition to it being a fundamental process in bacteria that merits investigation in its own right, studying the process of cell division offers an abundance of new targets for the development of new antibacterial compounds that act directly against key division proteins and other components of the cytoskeleton, which are encoded by the morphogenes of E. coli4. This review aims to present the reader with a snapshot summary of the key players in E. coli morphogenesis with emphasis on cell division and the rod to sphere transition.


Author(s):  
Maria A. Schumacher ◽  
Tomoo Ohashi ◽  
Lauren Corbin ◽  
Harold P. Erickson

Bacterial cytokinesis is mediated by the Z-ring, which is formed by the prokaryotic tubulin homolog FtsZ. Recent data indicate that the Z-ring is composed of small patches of FtsZ protofilaments that travel around the bacterial cell by treadmilling. Treadmilling involves a switch from a relaxed (R) state, favored for monomers, to a tense (T) conformation, which is favored upon association into filaments. The R conformation has been observed in numerous monomeric FtsZ crystal structures and the T conformation in Staphylococcus aureus FtsZ crystallized as assembled filaments. However, while Escherichia coli has served as a main model system for the study of the Z-ring and the associated divisome, a structure has not yet been reported for E. coli FtsZ. To address this gap, structures were determined of the E. coli FtsZ mutant FtsZ(L178E) with GDP and GTP bound to 1.35 and 1.40 Å resolution, respectively. The E. coli FtsZ(L178E) structures both crystallized as straight filaments with subunits in the R conformation. These high-resolution structures can be employed to facilitate experimental cell-division studies and their interpretation in E. coli.


2021 ◽  
Author(s):  
Shirin Ansari ◽  
James C. Walsh ◽  
Amy L. Bottomley ◽  
Iain G. Duggin ◽  
Catherine Burke ◽  
...  

Rod-shaped bacteria such as Escherichia coli can regulate cell division in response to stress, leading to filamentation, a process where cell growth and DNA replication continues in the absence of division, resulting in elongated cells. The classic example of stress is DNA damage which results in the activation of the SOS response. While the inhibition of cell division during SOS has traditionally been attributed to SulA in E. coli, a previous report suggests that the e14 prophage may also encode an SOS-inducible cell division inhibitor, previously named SfiC. However, the exact gene responsible for this division inhibition has remained unknown for over 35 years. A recent high-throughput over-expression screen in E. coli identified the e14 prophage gene, ymfM, as a potential cell division inhibitor. In this study, we show that the inducible expression of ymfM from a plasmid causes filamentation. We show that this expression of ymfM results in the inhibition of Z ring formation and is independent of the well characterised inhibitors of FtsZ ring assembly in E. coli, SulA, SlmA and MinC. We confirm that ymfM is the gene responsible for the SfiC phenotype as it contributes to the filamentation observed during the SOS response. This function is independent of SulA, highlighting that multiple alternative division inhibition pathways exist during the SOS response. Our data also highlight that our current understanding of cell division regulation during the SOS response is incomplete and raises many questions regarding how many inhibitors there actually are and their purpose for the survival of the organism. Importance: Filamentation is an important biological mechanism which aids in the survival, pathogenesis and antibiotic resistance of bacteria within different environments, including pathogenic bacteria such as uropathogenic Escherichia coli. Here we have identified a bacteriophage-encoded cell division inhibitor which contributes to the filamentation that occurs during the SOS response. Our work highlights that there are multiple pathways that inhibit cell division during stress. Identifying and characterising these pathways is a critical step in understanding survival tactics of bacteria which become important when combating the development of bacterial resistance to antibiotics and their pathogenicity.


2008 ◽  
Vol 191 (1) ◽  
pp. 333-346 ◽  
Author(s):  
Gouzel Karimova ◽  
Carine Robichon ◽  
Daniel Ladant

ABSTRACT Formation of the Escherichia coli division septum is catalyzed by a number of essential proteins (named Fts) that assemble into a ring-like structure at the future division site. Many of these Fts proteins are intrinsic transmembrane proteins whose functions are largely unknown. In the present study, we attempted to identify a novel putative component(s) of the E. coli cell division machinery by searching for proteins that could interact with known Fts proteins. To do that, we used a bacterial two-hybrid system based on interaction-mediated reconstitution of a cyclic AMP (cAMP) signaling cascade to perform a library screening in order to find putative partners of E. coli cell division protein FtsL. Here we report the characterization of YmgF, a 72-residue integral membrane protein of unknown function that was found to associate with many E. coli cell division proteins and to localize to the E. coli division septum in an FtsZ-, FtsA-, FtsQ-, and FtsN-dependent manner. Although YmgF was previously shown to be not essential for cell viability, we found that when overexpressed, YmgF was able to overcome the thermosensitive phenotype of the ftsQ1(Ts) mutation and restore its viability under low-osmolarity conditions. Our results suggest that YmgF might be a novel component of the E. coli cell division machinery.


1971 ◽  
Vol 17 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Roosevelt J. Jones ◽  
Roger R. Hewitt

An atypical viability response to 5-bromouracil has been observed in a thymine auxotroph of E. coli K-12. The response occurs in two phases, the first reflecting tolerance to the analogue during continued exponential growth and cell division. The second is a static phase during which viable number remains constant, while cell number and mass increase at a diminishing rate.During the latter phase filamentous cells increase in number and length. Examination of the cloning potential of cells after 10 h of growth in 5-bromouracil indicated that filamentous cells continue extension on solid medium into non-septate coils that are sterile. Other cells, presumably static when plated, readily form microcolonies free of defective members.Observed responses to penicillin, potentially stabilizing media, or added thymine suggest that 5-bromouracil evokes a bimodal response in this strain. The analogue exerts a bacteriostatic effect on some cells which remain viable for several hours. The bacteriocidal effect, presumably on cells continuing growth, interferes with cell division by preventing septation.


Microbiology ◽  
2014 ◽  
Vol 160 (4) ◽  
pp. 703-710 ◽  
Author(s):  
Morigen Morigen ◽  
Ingvild Flåtten ◽  
Kirsten Skarstad

In Escherichia coli inhibition of replication leads to a block of cell division. This checkpoint mechanism ensures that no cell divides without having two complete copies of the genome to pass on to the two daughter cells. The chromosomal datA site is a 1 kb region that contains binding sites for the DnaA replication initiator protein, and which contributes to the inactivation of DnaA. An excess of datA sites provided on plasmids has been found to lead to both a delay in initiation of replication and in cell division during exponential growth. Here we have investigated the effect of datA on the cell division block that occurs upon inhibition of replication initiation in a dnaC2 mutant. We found that this checkpoint mechanism was aided by the presence of datA. In cells where datA was deleted or an excess of DnaA was provided, cell division occurred in the absence of replication and anucleate cells were formed. This finding indicates that loss of datA and/or excess of DnaA protein promote cell division. This conclusion was supported by the finding that the lethality of the division-compromised mutants ftsZ84 and ftsI23 was suppressed by deletion of datA, at the lowest non-permissive temperature. We propose that the cell division block that occurs upon inhibition of DNA replication is, at least in part, due to a drop in the concentration of the ATP–DnaA protein.


mBio ◽  
2016 ◽  
Vol 7 (4) ◽  
Author(s):  
Feng Zhao ◽  
Yongtao Wang ◽  
Haoran An ◽  
Yanling Hao ◽  
Xiaosong Hu ◽  
...  

ABSTRACT The formation of viable but nonculturable (VBNC) Escherichia coli O157:H7 induced by high-pressure CO 2 (HPCD) was investigated using RNA sequencing (RNA-Seq) transcriptomics and isobaric tag for relative and absolute quantitation (iTRAQ) proteomic methods. The analyses revealed that 97 genes and 56 proteins were significantly changed upon VBNC state entry. Genes and proteins related to membrane transport, central metabolisms, DNA replication, and cell division were mainly downregulated in the VBNC cells. This caused low metabolic activity concurrently with a division arrest in cells, which may be related to VBNC state formation. Cell division repression and outer membrane overexpression were confirmed to be involved in VBNC state formation by homologous expression of z2046 coding for transcriptional repressor and ompF encoding outer membrane protein F. Upon VBNC state entry, pyruvate catabolism in the cells shifted from the tricarboxylic acid (TCA) cycle toward the fermentative route; this led to a low level of ATP. Combating the low energy supply, ATP production in the VBNC cells was compensated by the degradation of l -serine and l -threonine, the increased AMP generation, and the enhanced electron transfer. Furthermore, tolerance of the cells with respect to HPCD-induced acid, oxidation, and high CO 2 stresses was enhanced by promoting the production of ammonia and NADPH and by reducing CO 2 production during VBNC state formation. Most genes and proteins related to pathogenicity were downregulated in the VBNC cells. This would decrease the cell pathogenicity, which was confirmed by adhesion assays. In conclusion, the decreased metabolic activity, repressed cell division, and enhanced survival ability in E. coli O157:H7 might cause HPCD-induced VBNC state formation. IMPORTANCE Escherichia coli O157:H7 has been implicated in large foodborne outbreaks worldwide. It has been reported that the presence of as few as 10 cells in food could cause illness. However, the presence of only 0.73 to 1.5 culturable E. coli O157:H7 cells in salted salmon roe caused infection in Japan. Investigators found that E. coli O157:H7 in the viable but nonculturable (VBNC) state was the source of the outbreak. So far, formation mechanisms of VBNC state are not well known. In a previous study, we demonstrated that high-pressure CO 2 (HPCD) could induce the transition of E. coli O157:H7 into the VBNC state. In this study, we used RNA-Seq transcriptomic analysis combined with the iTRAQ proteomic method to investigate the formation of VBNC E. coli O157:H7 induced by HPCD treatment. Finally, we proposed a putative formation mechanism of the VBNC cells induced by HPCD, which may provide a theoretical foundation for controlling the VBNC state entry induced by HPCD treatment.


Sign in / Sign up

Export Citation Format

Share Document