scholarly journals Evolution of climatic niche specialization: a phylogenetic analysis in amphibians

2014 ◽  
Vol 281 (1795) ◽  
pp. 20133229 ◽  
Author(s):  
Maria Fernanda Bonetti ◽  
John J. Wiens

The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6967 ◽  
Author(s):  
Victoria T. González ◽  
Mikel Moriana-Armendariz ◽  
Snorre B. Hagen ◽  
Bente Lindgård ◽  
Rigmor Reiersen ◽  
...  

Climate change is modifying temperature and precipitation regimes across all seasons in northern ecosystems. Summer temperatures are higher, growing seasons extend into spring and fall and snow cover conditions are more variable during winter. The resistance of dominant tundra species to these season-specific changes, with each season potentially having contrasting effects on their growth and survival, can determine the future of tundra plant communities under climate change. In our study, we evaluated the effects of several spring/summer and winter climatic variables (i.e., summer temperature, growing season length, growing degree days, and number of winter freezing days) on the resistance of the dwarf shrub Empetrum nigrum. We measured over six years the ability of E. nigrum to keep a stable shoot growth, berry production, and vegetative cover in five E. nigrum dominated tundra heathlands, in a total of 144 plots covering a 200-km gradient from oceanic to continental climate. Overall, E. nigrum displayed high resistance to climatic variation along the gradient, with positive growth and reproductive output during all years and sites. Climatic conditions varied sharply among sites, especially during the winter months, finding that exposure to freezing temperatures during winter was correlated with reduced shoot length and berry production. These negative effects however, could be compensated if the following growing season was warm and long. Our study demonstrates that E. nigrum is a species resistant to fluctuating climatic conditions during the growing season and winter months in both oceanic and continental areas. Overall, E. nigrum appeared frost hardy and its resistance was determined by interactions among different season-specific climatic conditions with contrasting effects.


2021 ◽  
Author(s):  
Adam B. Smith ◽  
Stephen J. Murphy ◽  
David Henderson ◽  
Kelley D. Erickson

Conservation assessments frequently use occurrence records to estimate species' geographic distributions and environmental tolerances. Typically, records with imprecise geolocality information are discarded before analysis because they cannot be matched confidently to environmental conditions. However, removing records can artificially truncate species' environmental and geographic distributions. Here we evaluate the trade-offs between using versus discarding imprecise records when estimating species' ranges and climatic tolerances. We collated records from 44 species in the genus Asclepias (milkweeds). Records were designated "precise" if they could be matched confidently to environmental data, and "imprecise" if not. We compared estimates of extent of occurrence (EOO), climatic niche breadth, and exposure to climate change using precise records only, as well as precise plus imprecise records together. To estimate EOO, we conservatively assigned imprecise records to points within their area of likely collection that were closest to the centroid of precise records. Similarly, to estimate climatic tolerances and exposure to climate change, we matched imprecise records to climate values that were most similar to the mean across precise records. Across all species, including imprecise records increased EOO by 85% (median value; range across species: 0-2011%). Univariate niche breadth in mean annual temperature and precipitation increased by 25% (0-353%) and 28% (0-292%), respectively, while multivariate niche volume increased by 175% (8-13909%). Adding imprecise records increased suitable area in the present and area that remained suitable in the future. Imprecise records provide novel information about species' distributions and climatic niche tolerances. While the default practice of discarding imprecise records ensures that only accurate data are used, it dramatically reduces estimates of range size and overestimates exposure to climate change. The benefits of discarding imprecisely geolocated records must be balanced against the loss of information incurred by their elimination.


Author(s):  
V. V. Hrynchak

The decision about writing this article was made after familiarization with the "Brief Climatic Essay of Dnepropetrovsk City (prepared based on observations of 1886 – 1937)" written by the Head of the Dnipropetrovsk Weather Department of the Hydrometeorological Service A. N. Mikhailov. The guide has a very interesting fate: in 1943 it was taken by the Nazis from Dnipropetrovsk and in 1948 it returned from Berlin back to the Ukrainian Hydrometeorological and Environmental Directorate of the USSR, as evidenced by a respective entry on the Essay's second page. Having these invaluable materials and data of long-term weather observations in Dnipro city we decided to analyze climate changes in Dnipropetrovsk region. The article presents two 50-year periods, 1886-1937 and 1961-2015, as examples. Series of observations have a uniform and representative character because they were conducted using the same methodology and results processing. We compared two main characteristics of climate: air temperature and precipitation. The article describes changes of average annual temperature values and absolute temperature values. It specifies the shift of seasons' dates and change of seasons' duration. We studied the changes of annual precipitation and peculiarities of their seasonable distribution. Apart from that peculiarities of monthly rainfall fluctuations and their heterogeneity were specified. Since Dnipro city is located in the center of the region the identified tendencies mainly reflect changes of climatic conditions within the entire Dnipropetrovsk region.


1990 ◽  
Vol 14 ◽  
pp. 333-333
Author(s):  
David N. Collins

Parameterisation of relationships between climate and glacier mass balance is of considerable importance in understanding and modelling how temporal variability in climate affects the quantity of perennial snow and ice stored in glaciers, and the runoff from glacierised areas. Influences of year-to-year variations in air temperatures are pertinent in the absence of long records of measured energy balance and in view of predictions of future climate scenarios in terms of temperature. Measurements of temperature and precipitation from several stations in Alpine valleys in the Rhone basin, Wallis, Switzerland have been analysed to indicate trends in climate from 1930 to 1988. Actual measurements of mass balance of Griesgletscher, ablation calculated from runoff and net accumulation estimated from totalising rain gauges for Findelengletscher and Gornergletscher beginning in the late 1960s, and runoff from Aletschgletscher since 1930, were taken as annual glaciological responses to climatic variation. Variables to represent climatic elements and interactions between precipitation and temperature were selected according to degree of correlation with glacier response variables, and climate-glacier response relationships were assessed by multiple regression. Subsets of the data representing the coolest (1972–81) and warmest (1943–52) decades were also analysed to indicate whether relationships amongst climatic variables and between climate and mass balance remain the same under contrasting climatic conditions.Overall, mean summer air temperature variables for the months May through September and June through August provide the highest levels of explanation of variance of ablation and mass balance respectively (75–82%). Addition of a precipitation variable (winter, spring or summer) in multiple regression increases explanation to a maximum of 91%. Spring and summer precipitation variables are negatively correlated with ablation. Positive degree days and temperature-summer snow functions provide alternatives to temperature. Event-based analysis of the coolest and warmest years selected by rank order invokes high precipitation in May and low May-June temperatures and summer snowfall events as significant variables.Relationships between climatic variables indicate that warmer-than-average winters have higher precipitation, but at summer and annual time scales precipitation is slightly negatively associated with temperature. At the decadal level, warmer periods appear to be influenced by increased frequency of continental anticyclonic conditions, in an area subject to both maritime and continental influences. These analyses of climatic variables indicate that summer energy inputs dominate glacier mass balance. Relationships between precipitation and temperature are complex and were changeable during a fluctuation of about 1° over 40 years. Effects of a potentially warmer future on the form of precipitation in spring, summer and autumn are not clear, so estimates of changes of mass balance have been calculated for contrasting precipitation regimes.


Planta Medica ◽  
2019 ◽  
Vol 86 (01) ◽  
pp. 10-18 ◽  
Author(s):  
Wendy L. Applequist ◽  
Josef A. Brinckmann ◽  
Anthony B. Cunningham ◽  
Robbie E. Hart ◽  
Michael Heinrich ◽  
...  

AbstractThe recent publication of a World Scientistsʼ Warning to Humanity highlighted the fact that climate change, absent strenuous mitigation or adaptation efforts, will have profound negative effects for humanity and other species, affecting numerous aspects of life. In this paper, we call attention to one of these aspects, the effects of climate change on medicinal plants. These plants provide many benefits for human health, particularly in communities where Western medicine is unavailable. As for other species, their populations may be threatened by changing temperature and precipitation regimes, disruption of commensal relationships, and increases in pests and pathogens, combined with anthropogenic habitat fragmentation that impedes migration. Additionally, medicinal species are often harvested unsustainably, and this combination of pressures may push many populations to extinction. A second issue is that some species may respond to increased environmental stresses not only with declines in biomass production but with changes in chemical content, potentially affecting quality or even safety of medicinal products. We therefore recommend actions including conservation and local cultivation of valued plants, sustainability training for harvesters and certification of commercial material, preservation of traditional knowledge, and programs to monitor raw material quality in addition to, of course, efforts to mitigate climate change.


2020 ◽  
Author(s):  
Di Marco Moreno ◽  
Michela Pacifici ◽  
Luigi Maiorano ◽  
Carlo Rondinini

AbstractThe breadth of a species’ climatic niche is an important ecological trait that allows adaptation to climate change, but human activities drive niche erosion. Life-history traits, such as dispersal ability and reproductive speed, instead allow species to cope with climate change. But how do these characteristics act in combination with human pressure to determine niche change? Here we investigate the patterns and drivers of change in the realised climatic niche of 589 terrestrial mammal species. Our goal is to disentangle the impacts of humans, climate change, and life history. We calibrated the past and present climatic niches of each species by considering past climatic conditions (Mid Holocene) within their pre-human impact distributions, and current climatic conditions within the current distributions. Depending on the relationship between past and current niche, we defined four categories of change: “shrink”, “shift”, “stable”, and “expand”. We found over half of the species in our sample have undergone niche shrink, while only 15-18% of species retained a stable niche. After controlling for biogeography, climatic factors were the strongest correlates of species niche change, followed by anthropogenic pressure and species’ life history. Factors that increased the probability of niche shrink include: overall climatic instability in the area (both intermediate or high), large body mass, long gestation time, highly carnivorous or herbivorous diets, historical land-use change, and current human population density. We identified the conditions under which species are less likely to maintain their niche breadth, potentially losing adaptation capacity under climate change. Species with these characteristics require interventions that facilitate natural dispersal or assisted colonisation, to survive to rapidly changing climates.


2020 ◽  
Author(s):  
Sebastian Fiedler ◽  
José A.F. Monteiro ◽  
Kristin B. Hulvey ◽  
Rachel J. Standish ◽  
Michael P. Perring ◽  
...  

ABSTRACTEcological restoration increasingly aims at improving ecosystem multifunctionality and making landscapes resilient to future threats, especially in biodiversity hotspots such as Mediterranean-type ecosystems. Successful realisation of such a strategy requires a fundamental mechanistic understanding of the link between ecosystem plant composition, plant traits and related ecosystem functions and services, as well as how climate change affects these relationships. An integrated approach of empirical research and simulation modelling with focus on plant traits can allow this understanding.Based on empirical data from a large-scale restoration project in a Mediterranean-type climate in Western Australia, we developed and validated the spatially explicit simulation model ModEST, which calculates coupled dynamics of nutrients, water and individual plants characterised by traits. We then simulated all possible combinations of eight plant species with different levels of diversity to assess the role of plant diversity and traits on multifunctionality, the provision of six ecosystem functions (covering three ecosystem services), as well as trade-offs and synergies among the functions under current and future climatic conditions.Our results show that multifunctionality cannot fully be achieved because of trade-offs among functions that are attributable to sets of traits that affect functions differently. Our measure of multifunctionality was increased by higher levels of planted species richness under current, but not future climatic conditions. In contrast, single functions were differently impacted by increased plant diversity. In addition, we found that trade-offs and synergies among functions shifted with climate change.Synthesis and application. Our results imply that restoration ecologists will face a clear challenge to achieve their targets with respect to multifunctionality not only under current conditions, but also in the long-term. However, once ModEST is parameterized and validated for a specific restoration site, managers can assess which target goals can be achieved given the set of available plant species and site-specific conditions. It can also highlight which species combinations can best achieve long-term improved multifunctionality due to their trait diversity.


Author(s):  
K. Nivedita Priyadarshini ◽  
S. A. Rahaman ◽  
S. Nithesh Nirmal ◽  
R. Jegankumar ◽  
P. Masilamani

<p><strong>Abstract.</strong> Climate change impacts on watershed ecosystems and hydrologic processes are complex. The key significant parameters responsible for balancing the watershed ecosystems are temperature and rainfall. Though these parameters are uncertain, they play a prime role in the projections of dimensional climate change studies. The impact of climate change is more dependent on temperature and precipitation which contributes at a larger magnitude for characterising global warming issues. This paper aims to forecast the variations of temperature and precipitation during the period of 2020&amp;ndash;2050 for the northern part of Thenpennar sub basin. This study is modelled using SWAT (Soil and Water Assessment Tool) &amp;ndash; a scale model developed to predict the impact of changes that occurs in land, soil and water over a period of time. This study is validated using the base period from 1980&amp;ndash;2000 which shows the distribution of rainfall and temperature among 38 watersheds. The results from this study show that there is a decrease in the rainfall for a maximum of about 20% in the month of December during the predicted period of 2020 and 2050. This study assesses the possible adverse impact of climate change on temperature and precipitation of Thenpennai sub-basin. This kind of predictions will help the government agencies, rulers and decision makers in policy making and implementing the adaptation strategies for the changing climatic conditions.</p>


2021 ◽  
Author(s):  
John W Whale ◽  
Collin W Ahrens ◽  
David T Tissue ◽  
Paul D Rymer

With global climate change shifting and altering temperature and precipitation regimes, the ability of natural forest stands to persist in their local environments are being challenged. For many taxa, particularly among long lived tree species, the potential to respond is underpinned by genetic and trait diversity and may be limited. We sampled 326 and 366 individuals of two widely distributed and closely-related red gum Eucalyptus species (E. blakelyi and E. tereticornis) from across their entire Australian range. We identified putatively adaptive variants associated within genes of key biological processes for both species. We mapped the change of allele frequencies of two hierarchical gene ontology groups shared by both species across geography and climate and predict genomically vulnerable regions under a projected 2070 climate scenario. Regions of potential vulnerability to decline under future climate differed between species and may be applied to guide conservation and restoration strategies. Our study indicated that some populations may contain the adaptive genomic variation necessary for these species to persist through climate change, while others may benefit from the adaptive variation of those populations to enhance resilience.


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Børre K. Dervo ◽  
Kim Magnus Bærum ◽  
Jostein Skurdal ◽  
Jon Museth

To reveal the effects of climate, a generalized linear mixed model was used to explore the variation in onset of spawning migration for the two newt speciesT. cristatusandL. vulgarisin southern Norway. Amphibians are highly influenced by the physical environment, such as temperature and rainfall. The first migrating newts were observed subsequently to the three first consecutive days with mean temperature close to or above 4°C. Further, migration ofL. vulgariswas facilitated at lower temperatures compared toT. cristatus, but the migration was dependent on higher precipitation levels. Northern populations ofT. cristatusandL. vulgarismay already benefit from a warmer climate due to increased recruitment and juvenile survival. However, an offset in the migration phenology due to climate change might further alter the recruitment and survival rates with either positive or negative outcome. Thus, variations in migration phenology for newts due to climate change may have implications for management and protection status in many systems. In a general context, we should increase emphasis on protecting newts and support increased populations and distribution.


Sign in / Sign up

Export Citation Format

Share Document