scholarly journals The tubulin repertoire of C. elegans sensory neurons and its context dependent role in process outgrowth

2016 ◽  
Author(s):  
Dean Lockhead ◽  
Erich M. Schwarz ◽  
Robert O'Hagan ◽  
Sebastian Bellotti ◽  
Michael Krieg ◽  
...  

AbstractMicrotubules contribute to many cellular processes, including transport, signaling, and chromosome separation during cell division (Kapitein and Hoogenraad, 2015). They are comprised of αβ-tubulin heterodimers arranged into linear protofilaments and assembled into tubes. Eukaryotes express multiple tubulin isoforms (Gogonea et al., 1999), and there has been a longstanding debate as to whether the isoforms are redundant or perform specialized roles as part of a tubulin code (Fulton and Simpson, 1976). Here, we use the well-characterized touch receptor neurons (TRNs) of Caenorhabditis elegans to investigate this question, through genetic dissection of process outgrowth both in vivo and in vitro. With single-cell RNA-seq, we compare transcription profiles for TRNs with those of two other sensory neurons, and present evidence that each sensory neuron expresses a distinct palette of tubulin genes. In the TRNs, we analyze process outgrowth and show that four tubulins (tba-1, tba-2, tbb-1, and tbb-2) function partially or fully redundantly, while two others (mec-7 and mec-12) perform specialized, context-dependent roles. Our findings support a model in which sensory neurons express overlapping subsets of tubulin genes whose functional redundancy varies between cell types and in vivo and in vitro contexts.Highlight SummaryMicrotubules contribute to key cellular processes and are composed of αβ-tubulin heterodimers. Neurons in C. elegans express cell type-specific isoforms in addition to a shared repertoire and rely on tubulins for neurite outgrowth. Isoform function varies between in vivo and in vitro contexts.AbbreviationsTRNsTouch Receptor NeuronsRNA-seqRNA sequencingRFGReceptive Field GapTPMTranscripts per MillionECMExtracellular Matrix,CVCoefficient of VariationConflict of InterestThe authors declare no conflicting financial interests.

2016 ◽  
Vol 27 (23) ◽  
pp. 3717-3728 ◽  
Author(s):  
Dean Lockhead ◽  
Erich M. Schwarz ◽  
Robert O’Hagan ◽  
Sebastian Bellotti ◽  
Michael Krieg ◽  
...  

Microtubules contribute to many cellular processes, including transport, signaling, and chromosome separation during cell division. They comprise αβ‑tubulin heterodimers arranged into linear protofilaments and assembled into tubes. Eukaryotes express multiple tubulin isoforms, and there has been a longstanding debate as to whether the isoforms are redundant or perform specialized roles as part of a tubulin code. Here we use the well‑characterized touch receptor neurons (TRNs) of Caenorhabditis elegans to investigate this question through genetic dissection of process outgrowth both in vivo and in vitro. With single‑cell RNA-seq, we compare transcription profiles for TRNs with those of two other sensory neurons and present evidence that each sensory neuron expresses a distinct palette of tubulin genes. In the TRNs, we analyze process outgrowth and show that four tubulins (tba‑1, tba‑2, tbb‑1, and tbb‑2) function partially or fully redundantly, whereas two others (mec‑7 and mec‑12) perform specialized, context‑dependent roles. Our findings support a model in which sensory neurons express overlapping subsets of tubulin genes whose functional redundancy varies among cell types and in vivo and in vitro contexts.


2020 ◽  
Author(s):  
Sudip Mondal ◽  
Jyoti Dubey ◽  
Anjali Awasthi ◽  
Guruprasad Reddy Sure ◽  
Sandhya P. Koushika

AbstractThe long cellular architecture of neurons requires regulation in part through transport and anchoring events to distribute intracellular organelles. During development, cellular and sub-cellular events such as organelle additions and their recruitment at specific sites on the growing axons occur over different time scales and often show inter-animal variability thus making it difficult to identify specific phenomena in population averages. To measure the variability in sub-cellular events such as organelle positions, we developed a microfluidic device to feed and immobilize C. elegans for high-resolution imaging over several days. The microfluidic device enabled long-term imaging of individual animals and allowed us to investigate organelle density using mitochondria as a testbed in a growing neuronal process in vivo. Sub-cellular imaging of an individual neuron in multiple animals, over 36 hours in our microfluidic device, shows the addition of new mitochondria along the neuronal process and an increase in the accumulation of synaptic vesicles at synapses, both organelles with important roles in neurons. Long-term imaging of individual C. elegans touch receptor neurons identifies addition of new mitochondria and interacts with other moving mitochondria only through fission and fusion events. The addition of new mitochondria takes place along the entire neuronal process length and the threshold for the addition of a new mitochondrion is when the average separation between the two pre-existing mitochondria exceeds 24 micrometers.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated proteins, which protect them from DNA damage and regulate telomere length homeostasis. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to identify TEBP-1 and TEBP-2, two paralogs expressed in the germline and embryogenesis that associate to telomeres in vitro and in vivo. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a Mortal Germline. Notably, tebp-1;tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. Furthermore, we show that POT-1 forms a telomeric complex with TEBP-1 and TEBP-2, which bridges TEBP-1/-2 with POT-2/MRT-1. These results provide insights into the composition and organization of a telomeric protein complex in C. elegans.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3470
Author(s):  
Aubrey L. Miller ◽  
Patrick L. Garcia ◽  
Samuel C. Fehling ◽  
Tracy L. Gamblin ◽  
Rebecca B. Vance ◽  
...  

Gemcitabine is used to treat pancreatic cancer (PC), but is not curative. We sought to determine whether gemcitabine + a BET bromodomain inhibitor was superior to gemcitabine, and identify proteins that may contribute to the efficacy of this combination. This study was based on observations that cell cycle dysregulation and DNA damage augment the efficacy of gemcitabine. BET inhibitors arrest cells in G1 and allow increases in DNA damage, likely due to inhibition of expression of DNA repair proteins Ku80 and RAD51. BET inhibitors (JQ1 or I-BET762) + gemcitabine were synergistic in vitro, in Panc1, MiaPaCa2 and Su86 PC cell lines. JQ1 + gemcitabine was more effective in vivo than either drug alone in patient-derived xenograft models (P < 0.01). Increases in the apoptosis marker cleaved caspase 3 and DNA damage marker γH2AX paralleled antitumor efficacy. Notably, RNA-seq data showed that JQ1 + gemcitabine selectively inhibited HMGCS2 and APOC1 ~6-fold, compared to controls. These proteins contribute to cholesterol biosynthesis and lipid metabolism, and their overexpression supports tumor cell proliferation. IPA data indicated that JQ1 + gemcitabine selectively inhibited the LXR/RXR activation pathway, suggesting the hypothesis that this inhibition may contribute to the observed in vivo efficacy of JQ1 + gemcitabine.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii414-iii414
Author(s):  
Muh-Lii Liang ◽  
Tsung-Han Hsieh ◽  
Tai-Tong Wong

Abstract BACKGROUND Glial-lineage tumors constitute a heterogeneous group of neoplasms, comprising gliomas, oligodendrogliomas, and ependymomas, which account for 40%–50% of all pediatric central nervous system tumors. Advances in modern neuro-oncological therapeutics are aimed at improving neoadjuvant chemotherapy and deferring radiotherapy because radiation exposure may cause long-term side effects on the developing brain in young children. Despite aggressive treatment, more than half the high-grade gliomas (pHGGs) and one-third of ependymomas exhibit recurrence within 2 years of initial treatment. METHODS By using integrated bioinformatics and through experimental validation, we found that at least one gene among CCND1, CDK4, and CDK6 was overexpressed in pHGGs and ependymomas. RESULTS The use of abemaciclib, a highly selective CDK4/6 inhibitor, effectively inhibited cell proliferation and reduced the expression of cell cycle–related and DNA repair–related gene expression, which was determined through RNA-seq analysis. The efficiency of abemaciclib was validated in vitro in pHGGs and ependymoma cells and in vivo by using subcutaneously implanted ependymoma cells from patient-derived xenograft (PDX) in mouse models. Abemaciclib demonstrated the suppression of RB phosphorylation, downstream target genes of E2F, G2M checkpoint, and DNA repair, resulting in tumor suppression. CONCLUSION Abemaciclib showed encouraging results in preclinical pediatric glial-lineage tumors models and represented a potential therapeutic strategy for treating challenging tumors in children.


2021 ◽  
pp. 1-9
Author(s):  
Dayana Torres Valladares ◽  
Sirisha Kudumala ◽  
Murad Hossain ◽  
Lucia Carvelli

Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in <i>Caenorhabditis elegans</i> to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that <i>C. elegans</i> is a suitable system to study tolerance to drugs of abuse such as amphetamines.


2021 ◽  
Vol 22 (3) ◽  
pp. 1407
Author(s):  
Hongxia Liu ◽  
Wang Zheng ◽  
Qianping Chen ◽  
Yuchuan Zhou ◽  
Yan Pan ◽  
...  

Nasopharyngeal carcinoma (NPC) is one of the most frequent head and neck malignant tumors and is majorly treated by radiotherapy. However, radiation resistance remains a serious obstacle to the successful treatment of NPC. The aim of this study was to discover the underlying mechanism of radioresistance and to elucidate novel genes that may play important roles in the regulation of NPC radiosensitivity. By using RNA-seq analysis of NPC cell line CNE2 and its radioresistant cell line CNE2R, lncRNA CASC19 was screened out as a candidate radioresistance marker. Both in vitro and in vivo data demonstrated that a high expression level of CASC19 was positively correlated with the radioresistance of NPC, and the radiosensitivity of NPC cells was considerably enhanced by knockdown of CASC19. The incidence of autophagy was enhanced in CNE2R in comparison with CNE2 and another NPC cell line HONE1, and silencing autophagy with LC3 siRNA (siLC3) sensitized NPC cells to irradiation. Furthermore, CASC19 siRNA (siCASC19) suppressed cellular autophagy by inhibiting the AMPK/mTOR pathway and promoted apoptosis through the PARP1 pathway. Our results revealed for the first time that lncRNA CASC19 contributed to the radioresistance of NPC by regulating autophagy. In significance, CASC19 might be a potential molecular biomarker and a new therapeutic target in NPC.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Andrew R Bassett ◽  
Asifa Akhtar ◽  
Denise P Barlow ◽  
Adrian P Bird ◽  
Neil Brockdorff ◽  
...  

Although a small number of the vast array of animal long non-coding RNAs (lncRNAs) have known effects on cellular processes examined in vitro, the extent of their contributions to normal cell processes throughout development, differentiation and disease for the most part remains less clear. Phenotypes arising from deletion of an entire genomic locus cannot be unequivocally attributed either to the loss of the lncRNA per se or to the associated loss of other overlapping DNA regulatory elements. The distinction between cis- or trans-effects is also often problematic. We discuss the advantages and challenges associated with the current techniques for studying the in vivo function of lncRNAs in the light of different models of lncRNA molecular mechanism, and reflect on the design of experiments to mutate lncRNA loci. These considerations should assist in the further investigation of these transcriptional products of the genome.


Sign in / Sign up

Export Citation Format

Share Document