scholarly journals Noise control is a primary function of microRNAs and post-transcriptional regulation

2017 ◽  
Author(s):  
Jörn M. Schmiedel ◽  
Debora S. Marks ◽  
Ben Lehner ◽  
Nils Blüthgen

AbstractmicroRNAs are pervasive post-transcriptional regulators of protein-coding genes in multicellular organisms. Two fundamentally different models have been proposed for the function of microRNAs in gene regulation. In the first model, microRNAs act as repressors, reducing protein concentrations by accelerating mRNA decay and inhibiting translation. In the second model, in contrast, the role of microRNAs is not to reduce protein concentrations per se but to reduce fluctuations in these concentrations. Here we present genome-wide evidence that mammalian microRNAs frequently function as noise controllers rather than repressors. Moreover, we show that post-transcriptional noise control has been widely adopted across species from bacteria to animals, with microRNAs specifically employed to reduce noise in regulatory and context-specific processes in animals. Our results substantiate the detrimental nature of expression noise, reveal a universal strategy to control it, and suggest that microRNAs represent an evolutionary innovation for adaptive noise control in animals.HighlightsGenome-wide evidence that microRNAs function as noise controllers for genes with context-specific functionsPost-transcriptional noise control is universal from bacteria to animalsAnimals have evolved noise control for regulatory and context-specific processes

2017 ◽  
Author(s):  
John P. Lloyd ◽  
Zing Tsung-Yeh Tsai ◽  
Rosalie P. Sowers ◽  
Nicholas L. Panchy ◽  
Shin-Han Shiu

ABSTRACTWith advances in transcript profiling, the presence of transcriptional activities in intergenic regions has been well established. However, whether intergenic expression reflects transcriptional noise or activity of novel genes remains unclear. We identified intergenic transcribed regions (ITRs) in 15 diverse flowering plant species and found that the amount of intergenic expression correlates with genome size, a pattern that could be expected if intergenic expression is largely nonfunctional. To further assess the functionality of ITRs, we first built machine learning classifiers using Arabidopsis thaliana as a model that accurately distinguish functional sequences (phenotype genes) and likely nonfunctional ones (pseudogenes and unexpressed intergenic regions) by integrating 93 biochemical, evolutionary, and sequence-structure features. Next, by applying the models genome-wide, we found that 4,427 ITRs (38%) and 796 annotated ncRNAs (44%) had features significantly similar to benchmark protein-coding or RNA genes and thus were likely parts of functional genes. Approximately 60% of ITRs and ncRNAs were more similar to nonfunctional sequences and were likely transcriptional noise. The predictive framework established here provides not only a comprehensive look at how functional, genic sequences are distinct from likely nonfunctional ones, but also a new way to differentiate novel genes from genomic regions with noisy transcriptional activities.


Author(s):  
Xue Zhao ◽  
Achal Rastogi ◽  
Anne Flore Deton Cabanillas ◽  
Ouardia Ait Mohamed ◽  
Catherine Cantrel ◽  
...  

SummaryIn multicellular organisms, Polycomb Repressive Complex2 (PRC2) is known to deposit H3K27me3 to establish and maintain gene silencing, critical for developmentally regulated processes. PRC2 complex is absent in both widely studied model yeasts which initially suggested that PRC2 arose with the emergence of multicellularity. However, its discovery in several unicellular species including microalgae questions its role in unicellular eukaryotes.Here, we use Phaeodactylum tricornutum enhancer of zeste E(z) knockouts and show that P. tricornutum E(z) is responsible for di and tri-methylation of lysine 27 of histone H3.H3K27me3 depletion abolishes cell morphology in P. tricornutum providing evidence for its role in cell differentiation. Genome wide profiling of H3K27me3 in fusiform and triradiate cells further revealed genes that may specify cell identity.These results suggest a role for PRC2 and its associated mark in cell differentiation in unicellular species and highlight their ancestral function in a broader evolutionary context than is currently appreciated.


2020 ◽  
Vol 36 (9) ◽  
pp. 2936-2937 ◽  
Author(s):  
Gareth Peat ◽  
William Jones ◽  
Michael Nuhn ◽  
José Carlos Marugán ◽  
William Newell ◽  
...  

Abstract Motivation Genome-wide association studies (GWAS) are a powerful method to detect even weak associations between variants and phenotypes; however, many of the identified associated variants are in non-coding regions, and presumably influence gene expression regulation. Identifying potential drug targets, i.e. causal protein-coding genes, therefore, requires crossing the genetics results with functional data. Results We present a novel data integration pipeline that analyses GWAS results in the light of experimental epigenetic and cis-regulatory datasets, such as ChIP-Seq, Promoter-Capture Hi-C or eQTL, and presents them in a single report, which can be used for inferring likely causal genes. This pipeline was then fed into an interactive data resource. Availability and implementation The analysis code is available at www.github.com/Ensembl/postgap and the interactive data browser at postgwas.opentargets.io.


2021 ◽  
Vol 22 (11) ◽  
pp. 6091
Author(s):  
Kristina Daniunaite ◽  
Arnas Bakavicius ◽  
Kristina Zukauskaite ◽  
Ieva Rauluseviciute ◽  
Juozas Rimantas Lazutka ◽  
...  

The molecular diversity of prostate cancer (PCa) has been demonstrated by recent genome-wide studies, proposing a significant number of different molecular markers. However, only a few of them have been transferred into clinical practice so far. The present study aimed to identify and validate novel DNA methylation biomarkers for PCa diagnosis and prognosis. Microarray-based methylome data of well-characterized cancerous and noncancerous prostate tissue (NPT) pairs was used for the initial screening. Ten protein-coding genes were selected for validation in a set of 151 PCa, 51 NPT, as well as 17 benign prostatic hyperplasia samples. The Prostate Cancer Dataset (PRAD) of The Cancer Genome Atlas (TCGA) was utilized for independent validation of our findings. Methylation frequencies of ADAMTS12, CCDC181, FILIP1L, NAALAD2, PRKCB, and ZMIZ1 were up to 91% in our study. PCa specific methylation of ADAMTS12, CCDC181, NAALAD2, and PRKCB was demonstrated by qualitative and quantitative means (all p < 0.05). In agreement with PRAD, promoter methylation of these four genes was associated with the transcript down-regulation in the Lithuanian cohort (all p < 0.05). Methylation of ADAMTS12, NAALAD2, and PRKCB was independently predictive for biochemical disease recurrence, while NAALAD2 and PRKCB increased the prognostic power of multivariate models (all p < 0.01). The present study identified methylation of ADAMTS12, NAALAD2, and PRKCB as novel diagnostic and prognostic PCa biomarkers that might guide treatment decisions in clinical practice.


2019 ◽  
Vol 20 (13) ◽  
pp. 3315 ◽  
Author(s):  
Simona Cantarella ◽  
Davide Carnevali ◽  
Marco Morselli ◽  
Anastasia Conti ◽  
Matteo Pellegrini ◽  
...  

Alu retroelements, whose retrotransposition requires prior transcription by RNA polymerase III to generate Alu RNAs, represent the most numerous non-coding RNA (ncRNA) gene family in the human genome. Alu transcription is generally kept to extremely low levels by tight epigenetic silencing, but it has been reported to increase under different types of cell perturbation, such as viral infection and cancer. Alu RNAs, being able to act as gene expression modulators, may be directly involved in the mechanisms determining cellular behavior in such perturbed states. To directly address the regulatory potential of Alu RNAs, we generated IMR90 fibroblasts and HeLa cell lines stably overexpressing two slightly different Alu RNAs, and analyzed genome-wide the expression changes of protein-coding genes through RNA-sequencing. Among the genes that were upregulated or downregulated in response to Alu overexpression in IMR90, but not in HeLa cells, we found a highly significant enrichment of pathways involved in cell cycle progression and mitotic entry. Accordingly, Alu overexpression was found to promote transition from G1 to S phase, as revealed by flow cytometry. Therefore, increased Alu RNA may contribute to sustained cell proliferation, which is an important factor of cancer development and progression.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 643
Author(s):  
Thibaud Kuca ◽  
Brandy M. Marron ◽  
Joana G. P. Jacinto ◽  
Julia M. Paris ◽  
Christian Gerspach ◽  
...  

Genodermatosis such as hair disorders mostly follow a monogenic mode of inheritance. Congenital hypotrichosis (HY) belong to this group of disorders and is characterized by abnormally reduced hair since birth. The purpose of this study was to characterize the clinical phenotype of a breed-specific non-syndromic form of HY in Belted Galloway cattle and to identify the causative genetic variant for this recessive disorder. An affected calf born in Switzerland presented with multiple small to large areas of alopecia on the limbs and on the dorsal part of the head, neck, and back. A genome-wide association study using Swiss and US Belted Galloway cattle encompassing 12 cases and 61 controls revealed an association signal on chromosome 29. Homozygosity mapping in a subset of cases refined the HY locus to a 1.5 Mb critical interval and subsequent Sanger sequencing of protein-coding exons of positional candidate genes revealed a stop gain variant in the HEPHL1 gene that encodes a multi-copper ferroxidase protein so-called hephaestin like 1 (c.1684A>T; p.Lys562*). A perfect concordance between the homozygous presence of this most likely pathogenic loss-of-function variant and the HY phenotype was found. Genotyping of more than 700 purebred Swiss and US Belted Galloway cattle showed the global spread of the mutation. This study provides a molecular test that will permit the avoidance of risk matings by systematic genotyping of relevant breeding animals. This rare recessive HEPHL1-related form of hypotrichosis provides a novel large animal model for similar human conditions. The results have been incorporated in the Online Mendelian Inheritance in Animals (OMIA) database (OMIA 002230-9913).


2007 ◽  
Vol 283 (3) ◽  
pp. 1229-1233 ◽  
Author(s):  
Claudia Ben-Dov ◽  
Britta Hartmann ◽  
Josefin Lundgren ◽  
Juan Valcárcel

Alternative splicing of mRNA precursors allows the synthesis of multiple mRNAs from a single primary transcript, significantly expanding the information content and regulatory possibilities of higher eukaryotic genomes. High-throughput enabling technologies, particularly large-scale sequencing and splicing-sensitive microarrays, are providing unprecedented opportunities to address key questions in this field. The picture emerging from these pioneering studies is that alternative splicing affects most human genes and a significant fraction of the genes in other multicellular organisms, with the potential to greatly influence the evolution of complex genomes. A combinatorial code of regulatory signals and factors can deploy physiologically coherent programs of alternative splicing that are distinct from those regulated at other steps of gene expression. Pre-mRNA splicing and its regulation play important roles in human pathologies, and genome-wide analyses in this area are paving the way for improved diagnostic tools and for the identification of novel and more specific pharmaceutical targets.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Clint L Miller ◽  
Milos Pjanic ◽  
Jonathan D Lee ◽  
Boxiang Liu ◽  
William J Greenleaf ◽  
...  

Genome-wide association studies have identified 46 replicated genetic loci for coronary heart disease (CHD), and 104 loci associated at a 5% false discovery rate. However, the regulatory mechanisms of these associations largely remain elusive. Given that the majority of these CHD-associated loci reside in non-coding regions, they are predicted to function via context-specific gene regulation. Recent high-throughput assays of regulatory function include the assay for transposase-accessible chromatin using sequencing (ATAC-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq). ATAC-seq utilizes a Tn5 transposase to fragment and tag accessible DNA sequences, which are often coupled to transcription factor occupancy identified by ChIP-seq. Importantly, this assay may reveal the spatio-temporal regulatory profiles in limited numbers of primary cells. Using ATAC-seq in human coronary artery smooth muscle cells (HCASMC) we identified 147,173 accessible chromatin peaks in control versus 198,976 peaks in TGF-beta-stimulated cells (136,446 shared peaks). Using de novo motif enrichment analysis we identified significant enrichment of specific AP-1 family members (29.2% vs. 5.1% background), chromatin remodeling, and SMC differentiation transcription factors. Using functional enrichment analysis of ChIP-seq and CHD-overlapping regions we observed enrichment of the hypoxia inducible factor 1 (HIF-1) and TGF-beta signaling pathways (1.5x10 -22 and 5.6x10 -18 , respectively) and relevant phenotypes, including cell migration and blood vessel morphology. Finally, we utilized these regulatory maps to explore the causal mechanisms underlying CHD-associated variants at four loci using haplotype-specific chromatin immunoprecipitation (haploChIP) and luciferase reporter assays. Taken together, these results suggest that genome-wide approaches such as ATAC-seq can be leveraged to map context-specific regulatory mechanisms of non-coding variants associated with complex diseases such as CHD, and reveal new biological and molecular insights into targeting heritable disease risk.


2021 ◽  
Vol 118 (41) ◽  
pp. e2104832118
Author(s):  
Vinod K. Mony ◽  
Anna Drangowska-Way ◽  
Reka Albert ◽  
Emma Harrison ◽  
Abbas Ghaddar ◽  
...  

Plasticity in multicellular organisms involves signaling pathways converting contexts—either natural environmental challenges or laboratory perturbations—into context-specific changes in gene expression. Congruently, the interactions between the signaling molecules and transcription factors (TF) regulating these responses are also context specific. However, when a target gene responds across contexts, the upstream TF identified in one context is often inferred to regulate it across contexts. Reconciling these stable TF–target gene pair inferences with the context-specific nature of homeostatic responses is therefore needed. The induction of the Caenorhabditis elegans genes lipl-3 and lipl-4 is observed in many genetic contexts and is essential to survival during fasting. We find DAF-16/FOXO mediating lipl-4 induction in all contexts tested; hence, lipl-4 regulation seems context independent and compatible with across-context inferences. In contrast, DAF-16–mediated regulation of lipl-3 is context specific. DAF-16 reduces the induction of lipl-3 during fasting, yet it promotes it during oxidative stress. Through discrete dynamic modeling and genetic epistasis, we define that DAF-16 represses HLH-30/TFEB—the main TF activating lipl-3 during fasting. Contrastingly, DAF-16 activates the stress-responsive TF HSF-1 during oxidative stress, which promotes C. elegans survival through induction of lipl-3. Furthermore, the TF MXL-3 contributes to the dominance of HSF-1 at the expense of HLH-30 during oxidative stress but not during fasting. This study shows how context-specific diverting of functional interactions within a molecular network allows cells to specifically respond to a large number of contexts with a limited number of molecular players, a mode of transcriptional regulation we name “contextualized transcription.”


Sign in / Sign up

Export Citation Format

Share Document