scholarly journals DNA-PK facilitates HIV transcription by regulating the activity of RNA polymerase II and the recruitment of transcription machinery at HIV LTR

2017 ◽  
Author(s):  
Sonia Zicari ◽  
Geetaram Sahu ◽  
Larisa Dubrovsky ◽  
Lin Sun ◽  
Han Yue ◽  
...  

ABSTRACTDespite the use of highly effective antiretroviral therapy (HAART), the presence of latent or transcriptionally silent proviruses prevents cure and eradication of HIV infection. These transcriptionally silent proviruses are well protected from both the immune system and HAART regimens. Thus, in order to tackle the problem of latent HIV reservoirs, it is a prerequisite to define all the pathways that regulate HIV transcription. We have previously reported that DNA-PK facilitates HIV transcription by interacting with the RNA polymerase II (RNAP II) complex recruited at HIV LTR. To extend those studies further, here we demonstrate that DNA-PK promotes HIV transcription by supporting it at several stages, including initiation, pause-release and elongation. We discovered that DNA-PK increases phosphorylation of RNAP II C-terminal domain (CTD) at serine 5 (Ser5) and serine 2 (Ser2) by both directly catalyzing and by augmenting the recruitment of P-TEFb at HIV LTR. We found that DNA-PK facilitates the establishment of euchromatin structure at HIV LTR, which further supports HIV gene expression. DNA-PK inhibition or knockdown leads to the severe impairment of HIV gene expression and conversion of euchromatin to heterochromatin at HIV LTR. It also profoundly restricts HIV replication and reactivation of latent provirus. DNA-PK promotes the recruitment of TRIM28 at LTR and facilitates the release of paused RNAP II through TRIM28 phosphorylation. The results were reproduced in cell lines belonging to both lymphoid and myeloid lineages and were confirmed in primary CD4+T cells and peripheral blood mononuclear cells (PBMCs) from HIV-infected patients.IMPORTANCE:Our results reveal the important role of DNA-PK in supporting HIV transcription, replication and latent proviral reactivation. Intriguingly, this study sheds light on an important pathway that affects HIV gene expression. These findings provide strong rationale for developing and using transcriptional inhibitors, such as DNA-PK inhibitors, as supplement to HAART regimens in order to further enhance their effectiveness and to suppress toxicity due to HIV proteins.

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Livia Eiselleova ◽  
Viktor Lukjanov ◽  
Simon Farkas ◽  
David Svoboda ◽  
Karel Stepka ◽  
...  

The eukaryotic nucleus is a highly complex structure that carries out multiple functions primarily needed for gene expression, and among them, transcription seems to be the most fundamental. Diverse approaches have demonstrated that transcription takes place at discrete sites known as transcription factories, wherein RNA polymerase II (RNAP II) is attached to the factory and immobilized while transcribing DNA. It has been proposed that transcription factories promote chromatin loop formation, creating long-range interactions in which relatively distant genes can be transcribed simultaneously. In this study, we examined long-range interactions between the POU5F1 gene and genes previously identified as being POU5F1 enhancer-interacting, namely, CDYL, TLE2, RARG, and MSX1 (all involved in transcriptional regulation), in human pluripotent stem cells (hPSCs) and their early differentiated counterparts. As a control gene, RUNX1 was used, which is expressed during hematopoietic differentiation and not associated with pluripotency. To reveal how these long-range interactions between POU5F1 and the selected genes change with the onset of differentiation and upon RNAP II inhibition, we performed three-dimensional fluorescence in situ hybridization (3D-FISH) followed by computational simulation analysis. Our analysis showed that the numbers of long-range interactions between specific genes decrease during differentiation, suggesting that the transcription of monitored genes is associated with pluripotency. In addition, we showed that upon inhibition of RNAP II, long-range associations do not disintegrate and remain constant. We also analyzed the distance distributions of these genes in the context of their positions in the nucleus and revealed that they tend to have similar patterns resembling normal distribution. Furthermore, we compared data created in vitro and in silico to assess the biological relevance of our results.


2011 ◽  
Vol 92 (7) ◽  
pp. 1710-1720 ◽  
Author(s):  
Shilpi Tyagi ◽  
Alex Ochem ◽  
Mudit Tyagi

DNA-dependent protein kinase (DNA-PK), a nuclear protein kinase that specifically requires association with DNA for its kinase activity, plays important roles in the regulation of different DNA transactions, including transcription, replication and DNA repair, as well as in the maintenance of telomeres. Due to its large size, DNA-PK is also known to facilitate the activities of other factors by providing the docking platform at their site of action. In this study, by running several chromatin immunoprecipitation assays, we demonstrate the parallel distribution of DNA-PK with RNA polymerase II (RNAP II) along the human immunodeficiency virus (HIV) provirus before and after activation with tumour necrosis factor alpha. The association between DNA-PK and RNAP II is also long-lasting, at least for up to 4 h (the duration analysed in this study). Knockdown of endogenous DNA-PK using specific small hairpin RNAs expressed from lentiviral vectors resulted in significant reduction in HIV gene expression and replication, demonstrating the importance of DNA-PK for HIV gene expression. Sequence analysis of the HIV-1 Tat protein revealed three potential target sites for phosphorylation by DNA-PK and, by using kinase assays, we confirmed that Tat is an effective substrate of DNA-PK. Through peptide mapping, we found that two of these three potential phosphorylation sites are recognized and phosphorylated by DNA-PK. Mutational studies on the DNA-PK target sites of Tat further demonstrated the functional significance of the Tat–DNA-PK interaction. Thus, overall our results clearly demonstrate the functional interaction between DNA-PK and RNAP II during HIV transcription.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1666
Author(s):  
Matthew Parker ◽  
Kenneth Peterson ◽  
Chad Slawson

O-linked β-N-acetylglucosamine (O-GlcNAc) is a single sugar post-translational modification (PTM) of intracellular proteins linking nutrient flux through the Hexosamine Biosynthetic Pathway (HBP) to the control of cis-regulatory elements in the genome. Aberrant O-GlcNAcylation is associated with the development, progression, and alterations in gene expression in cancer. O-GlcNAc cycling is defined as the addition and subsequent removal of the modification by O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA) provides a novel method for cells to regulate various aspects of gene expression, including RNA polymerase function, epigenetic dynamics, and transcription factor activity. We will focus on the complex relationship between phosphorylation and O-GlcNAcylation in the regulation of the RNA Polymerase II (RNAP II) pre-initiation complex and the regulation of the carboxyl-terminal domain of RNAP II via the synchronous actions of OGT, OGA, and kinases. Additionally, we discuss how O-GlcNAcylation of TATA-box binding protein (TBP) alters cellular metabolism. Next, in a non-exhaustive manner, we will discuss the current literature on how O-GlcNAcylation drives gene transcription in cancer through changes in transcription factor or chromatin remodeling complex functions. We conclude with a discussion of the challenges associated with studying O-GlcNAcylation and present several new approaches for studying O-GlcNAc regulated transcription that will advance our understanding of the role of O-GlcNAc in cancer.


2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


2005 ◽  
Vol 83 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Benoit Coulombe ◽  
Marie-France Langelier

High resolution X-ray crystal structures of multisubunit RNA polymerases (RNAP) have contributed to our understanding of transcriptional mechanisms. They also provided a powerful guide for the design of experiments aimed at further characterizing the molecular stages of the transcription reaction. Our laboratory used tandem-affinity peptide purification in native conditions to isolate human RNAP II variants that had site-specific mutations in structural elements located strategically within the enzyme's catalytic center. Both in vitro and in vivo analyses of these mutants revealed novel features of the catalytic mechanisms involving this enzyme.Key words: RNA polymerase II, transcriptional mechanisms, mutational analysis, mRNA synthesis.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ruoxi Yu ◽  
Yin Yang ◽  
Yuanyuan Han ◽  
Pengwei Hou ◽  
Yingshuai Li ◽  
...  

Objectives. Differences among healthy subjects and associated disease risks are of substantial interest in clinical medicine. According to the theory of “constitution-disease correlation” in traditional Chinese medicine, we try to find out if there is any connection between intolerance of cold in Yang deficiency constitution and molecular evidence and if there is any gene expression basis in specific disorders. Methods. Peripheral blood mononuclear cells were collected from Chinese Han individuals with Yang deficiency constitution (n=20) and balanced constitution (n=8) (aged 18–28) and global gene expression profiles were determined between them using the Affymetrix HG-U133 Plus 2.0 array. Results. The results showed that when the fold change was ≥1.2 and q ≤ 0.05, 909 genes were upregulated in the Yang deficiency constitution, while 1189 genes were downregulated. According to our research differential genes found in Yang deficiency constitution were usually related to lower immunity, metabolic disorders, and cancer tendency. Conclusion. Gene expression disturbance exists in Yang deficiency constitution, which corresponds to the concept of constitution and gene classification. It also suggests people with Yang deficiency constitution are susceptible to autoimmune diseases, enteritis, arthritis, metabolism disorders, and cancer, which provides molecular evidence for the theory of “constitution-disease correlation.”


2021 ◽  
Author(s):  
Blase Matthew LeBlanc ◽  
Rosamaria Yvette Moreno ◽  
Edwin Escobar ◽  
Mukesh Kumar Venkat Ramani ◽  
Jennifer S Brodbelt ◽  
...  

RNA polymerase II (RNAP II) is one of the primary enzymes responsible for expressing protein-encoding genes and some small nuclear RNAs. The enigmatic carboxy-terminal domain (CTD) of RNAP II and...


Sign in / Sign up

Export Citation Format

Share Document