scholarly journals Apoptotic endometrial caspase-3 mediated phospholipase a2 activation, a critical component in programing uterine receptivity

2020 ◽  
Author(s):  
Sicily E. Garvin ◽  
Chandrashekara Kyathanahalli ◽  
Arren E. Simpson ◽  
Jennifer C. Condon ◽  
Pancharatnam Jeyasuria

AbstractThe objective of this study was to determine the consequence of uterine apoptotic caspase-3 activation on day 1 post coitus (dpc) in the pregnant mouse. We previously demonstrated that during pregnancy uterine caspase-3 activation isolated to the myometrial compartment is largely non-apoptotic and controls uterine quiescence. In this study we determined that uterine caspase-3 activation on 1 dpc may play a critical role in regulating endometrial PGE2 synthesis though iPLA2 activation. These analyses provide novel insight into the molecular mechanisms that regulate previously reported increases in endometrial PGE2 synthesis in very early pregnancy, that act to enhance uterine receptivity.We have identified the site and impact of that uterine apoptotic caspase-3 activation utilizing uteri isolated from non-pregnant control animals at estrous and diestrous and from control pregnant mice at 1-19 dpc. In addition, uteri were isolated from non-ligated controls (GD), unilateral (UL) and bilateral ligated (BL) uterine horn mouse models at 1, 3 and 6 dpc. Uteri were examined for apoptotic indices, such as caspase-3 activation and TUNEL staining. Immunohistochemical analysis was performed to identify the site of apoptotic caspase-3 activation. The presence of the truncated form of phospholipase A2 (tiPLA2) was examined as a measure of apoptotic caspase-3 mediated iPLA2 activation.Our analysis determined that apoptotic caspase-3 and iPLA2 activation were limited to the endometrial compartments of the control and unilateral uteri on 1dpc and were not found in the bilateral ligated uterine horn on 3 or 6 dpc. Our data indicates that the presence of a conceptus on 1 dpc triggers an increase in endometrial apoptotic caspase-3 mediated iPLA2 activation. iPLA2 when activated causes the hydrolysis of fatty acids resulting in arachidonic acid release and production of PGE2, which in early pregnancy has been demonstrated to act in a leutoprotective manner, prolonging progesterone synthesis and promoting uterine receptivity.

2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii23-iii23
Author(s):  
B Liu ◽  
Q Chen

Abstract Background Abnormal activation of NF-κB signaling is a major mechanism of apoptosis resistance in glioblastoma multiforme (GBM). Therefore, better understanding of the regulation of NF-κB signaling has a significant impact for GBM therapy. Here, we uncovered a critical role of the small GTPase RND3 in regulating the p65 subunit of NF-κB and NF-κB signaling in GBM. MATERIALS AND METHODS Human GBM samples, GBM cells and a human orthotopic GBM-xenografted animal model were used. The mechanisms of RND3 in regulation of NF-κB signaling and GBM cell apoptosis were examined by luciferase assay, quantitative PCR, immunostaining, immunoblotting, immunofluorescence, co-immunoprecipitation, TUNEL staining, JC-1 analysis and flow cytometry. RESULTS Overexpression of RND3 led to reduced p65 activity in GBM cultured cells and a GBM animal model, indicating that the NF-κB pathway is negatively regulated by RND3 in GBM. Mechanistically, we found that RND3 bound p65 and promoted p65 ubiquitination, leading to decreased p65 protein levels. Furthermore, RND3 enhanced cleaved-caspase 3 levels and promoted apoptosis in GBM cells, and RND3 expression was positively correlated with cleaved-caspase 3 and IL-8 in human GBM samples. The effect of RND3 on promoting apoptosis disappeared when p65 ubiquitination was blocked by protease inhibitor carfilzomib or upon co-expression of ectopic p65. CONCLUSION RND3 binds p65 protein and promotes its ubiquitination, resulting in reduced p65 protein expression and inhibition of NF-κB signaling to induce GBM cell apoptosis.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Liang Yue ◽  
Lei Zhao ◽  
Haixiao Liu ◽  
Xia Li ◽  
Bodong Wang ◽  
...  

Glutamate- (Glu-) induced excitotoxicity plays a critical role in stroke. This study aimed to investigate the effects of APN on Glu-induced injury in HT22 neurons. HT22 neurons were treated with Glu in the absence or the presence of an APN peptide. Cell viability was assessed using the MTT assay, while cell apoptosis was evaluated using TUNEL staining. Levels of LDH, MDA, SOD, and GSH-Px were detected using the respective kits, and ROS levels were detected using dichlorofluorescein diacetate. Western blot was used to detect the expression levels of silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), cleaved caspase-3, Bax, and Bcl-2. In addition to the western blot, immunofluorescence was used to investigate the expression levels of SIRT1 and PGC-1α. Our results suggest that APN peptide increased cell viability, SOD, and GSH-Px levels and decreased LDH release, ROS and MDA levels, and cell apoptosis. APN peptide upregulated the expression of SIRT1, PGC-1α, and Bcl-2 and downregulated the expression of cleaved caspase-3 and Bax. Furthermore, the protective effects of the APN peptide were abolished by SIRT1 siRNA. Our findings suggest that APN peptide protects HT22 neurons against Glu-induced injury by inhibiting neuronal apoptosis and activating SIRT1-dependent PGC-1αsignaling.


2019 ◽  
Vol 47 (10) ◽  
pp. 4644-4655
Author(s):  
Zheng-ming Yang ◽  
Min-fei Yang ◽  
Wei Yu ◽  
Hui-min Tao

The estrogen receptors α (ERα) and β (ERβ) are located in the nucleus and bind to estrogen to initiate transcription of estrogen-responsive genes. In a variety of tumor cells, ERβ has been shown to be a tumor suppressor. In particular, ERβ has anti-proliferative effects in osteosarcoma cells. Additionally, ERβ has been proven to regulate the apoptosis-related molecules IAP, BAX, caspase-3, and PARP, and to act on the NF-κB/BCL-2 pathway to induce apoptosis in tumors. Moreover, ERβ can regulate the expression of the autophagy associated markers LC3-I/LC-3II and p62 and induce autophagy in tumors by inhibiting the PI3K/AKT/mTOR pathway and activating the AMPK pathway. Here, we review the molecular mechanisms by which ERβ induces apoptosis and autophagy in a variety of tumors to further delineate more specific molecular mechanisms underlying osteosarcoma tumorigenesis and pathogenesis. Considering the broad involvement of ERβ in apoptosis, autophagy, and their interaction, it is plausible that the critical role of ERβ in inhibiting the proliferation and metastasis of osteosarcoma cells is closely related to its regulation of apoptosis and autophagy.


2021 ◽  
Author(s):  
Chao Ma ◽  
Xiaobo Wang ◽  
Wanli W Smith ◽  
Zhaohui Liu

Abstract BackgroundRecently, four Parkinson’s disease (PD)-linked mutations (Y92C, R141L, 184PGext*5 and 184Wext*5) in transmembrane protein 230 (TMEM230) were identified in PD patients, and these mutations have implications in protein trafficking and neurodegeneration. However, there is a lack of in vivo studies on the roles of PD-related variants of TMEM230 in PD pathogenesis.MethodsIn this study, we generated human wild-type (WT) and mutant TMEM230 (Y92C, R141L, 184PGext*5 and 184Wext*5) transgenic Drosophila using isoform Ⅱ cDNA. ResultsWe found that the expression of TMEM230 184PGext*5 in pan-neurons or dopaminergic neurons in Drosophila induced PD-like phenotypes, which included impaired locomotor ability, a shortened lifespan, reduced TH levels, and increased phosphorylated JNK and cleaved caspase-3 levels. Moreover, rotenone, a common pesticide, enhanced TMEM230-184PGext*5-induced PD-like phenotypes. In contrast, the overexpression of wild-type (WT) VPS35 rescued TMEM230-184PGext*5-induced PD-like phenotypes, while the knockdown of VPS35 by RNA interference (RNAi) or the expression of mutant VPS35 D620N worsened PD-like phenotypes. ConclusionThese results indicate that VPS35, as a downstream effector of TMEM230, plays a critical role in TMEM230-linked JNK/caspase-3 signalling pathways and that mutations in TMEM230 and VPS35 disrupt these pathways, resulting in dopaminergic neurodegeneration and PD-like phenotypes. These findings provide novel insight into the molecular mechanisms of mutant TME230- and VPS35-induced abnormalities underlying the pathogenesis of PD.


Reproduction ◽  
2017 ◽  
Vol 154 (5) ◽  
pp. 595-605 ◽  
Author(s):  
Seo-Ho Lee ◽  
Byung-Ju Kim ◽  
Uh-Hyun Kim

CD31 has been shown to play a role in endothelial cell migration and angiogenesis, which are critical to the formation and function of the endometrium and myometrium in uterine development during early pregnancy. However, the role of CD31 in uterine receptivity during blastocyst implantation is poorly understood. The pregnancy rate in CD31−/− female mice mated with CD31+/+ male mice was higher than that observed in CD31+/+ female mice mated with CD31+/+ male mice. During the receptive phase of implantation, uterine glands were more developed in CD31−/− mice than in CD31+/+ mice, and the uterine weights of CD31−/− mice were increased. Leukemia inhibitory factor (LIF) was highly expressed in the CD31−/− mice during implantation and the expression of LIF was up-regulated by estradiol-17β (E2) + progesterone (P4) in ovariectomized CD31−/− mice, compared with CD31+/+ mice at 8 h after hormone treatment. E2-induced protein synthesis was inhibited by P4 in the CD31+/+ uterus, but not in the uterus of CD31−/− mice. Also, STAT3, HAND2, LIF, and mTOR signals were enhanced in CD31−/− mice. Stromal DNA replication was highly activated in the uterus of CD31−/− mice, manifested by upregulated cyclin series signaling and PCNA expression after E2 + P4treatment. Collectively, CD31 inhibits E2-mediated epithelial proliferation via recruitment and phosphorylation of SHP-2 upon receiving P4signal in early pregnancy.


2015 ◽  
Vol 36 (2) ◽  
pp. 435-445 ◽  
Author(s):  
Cheng Xiang ◽  
Yuanjing Lv ◽  
Yanjie Wei ◽  
Jing Wei ◽  
Susheng Miao ◽  
...  

Aims: This study aimed to investigate the expression of EphA7 in human laryngeal squamous cell carcinoma (LSCC) tissues and disclose the potential roles and molecular mechanisms of EphA7 in LSCC. Methods: In the present study, we examined EphA7 expression and its function and mechanism in LSCC. EphA7 expression levels were investigated by quantitative real-time PCR (qRT-PCR), western blotting, and immunohistochemistry in a panel of 35 LSCC patient cases. To investigate the potential mechanism of EphA7 in human laryngeal cancer, we employed EphA7 siRNA to knockdown EphA7 expression in LSCC cell line Hep-2 and AMC-HN-8. Subsequently, MTT, TUNEL, qRT-PCR, and western blotting were performed to disclose the roles of EphA7 on proliferation, invasion and migration, and apoptosis in LSCC cell line Hep-2 and AMC-HN-8. Results: Depletion of EphA7 remarkably inhibited the proliferation and invasion of Hep-2 and AMC-HN-8 cells in comparison to control and EphA7 siRNA negative control (NC)-transfected cells. TUNEL staining assay demonstrated that, compared with the control group, the rate of apoptosis in the EphA7 siRNA group was significantly increased. In addition, knockdown of EphA7 in Hep-2 or AMC-HN-8 cells markedly decreased the expression of EphA7 and PTEN, which could contribute to apoptosis. However, the bpV(phen), a PTEN inhibitor, could attenuate anti-proliferation and pro-apoptotic effects of EphA7 siRNA in Hep-2 and AMC-HN-8 cells. Conclusion: Up-regulation of EphA7 was observed in human LSCC samples and down-regulation of EphA7 effectively suppressed laryngeal carcinoma cell growth and promoted its apoptosis. Thus, EphA7 has a critical role in modulating cell growth and apoptosis, which serves as a potential therapeutic target in human LSCC.


2020 ◽  
Author(s):  
Lungwani Muungo

The androgen receptor (AR) plays a critical role in the development and the progression of prostate cancer. Alterations in theexpression of AR coregulators lead to AR hypersensitivity, which is one of the mechanisms underlying the progression ofprostate cancer into a castrate-resistant state. Octamer transcription factor 1 (Oct1) is a ubiquitous member of the POUhomeodomainfamily that functions as a coregulator of AR. In our study, the contribution of Oct1 to prostate cancerdevelopment was examined. Immunocytochemistry analysis showed that Oct1 is expressed in the nuclei of LNCaP cells.siRNA-mediated silencing of Oct1 expression inhibited LNCaP cell proliferation. Immunohistochemical analysis of Oct1expression in tumor specimens obtained from 102 patients with prostate cancer showed a positive correlation of Oct1immunoreactivity with a high Gleason score and AR immunoreactivity (p 5 0.0042 and p < 0.0001, respectively). Moreover,patients with high immunoreactivity of Oct1 showed a low cancer-specific survival rate, and those patients with highimmunoreactivities of both Oct1 and AR exhibited poorer cancer-specific prognosis. Multivariate hazard analysis revealed asignificant correlation between high Oct1 immunoreactivity and poor cancer-specific survival (p 5 0.012). These resultsdemonstrate that Oct1 can be a prognostic factor in prostate cancer as a coregulator of AR and may lead to the developmentof a new therapeutic intervention for prostate cancer.


2020 ◽  
Vol 27 (7) ◽  
pp. 1041-1051 ◽  
Author(s):  
Michael Spartalis ◽  
Eleftherios Spartalis ◽  
Antonios Athanasiou ◽  
Stavroula A. Paschou ◽  
Christos Kontogiannis ◽  
...  

Atherosclerotic disease is still one of the leading causes of mortality. Atherosclerosis is a complex progressive and systematic artery disease that involves the intima of the large and middle artery vessels. The inflammation has a key role in the pathophysiological process of the disease and the infiltration of the intima from monocytes, macrophages and T-lymphocytes combined with endothelial dysfunction and accumulated oxidized low-density lipoprotein (LDL) are the main findings of atherogenesis. The development of atherosclerosis involves multiple genetic and environmental factors. Although a large number of genes, genetic polymorphisms, and susceptible loci have been identified in chromosomal regions associated with atherosclerosis, it is the epigenetic process that regulates the chromosomal organization and genetic expression that plays a critical role in the pathogenesis of atherosclerosis. Despite the positive progress made in understanding the pathogenesis of atherosclerosis, the knowledge about the disease remains scarce.


2019 ◽  
Vol 19 (10) ◽  
pp. 705-718 ◽  
Author(s):  
Naima Mansoor ◽  
Fazli Wahid ◽  
Maleeha Azam ◽  
Khadim Shah ◽  
Anneke I. den Hollander ◽  
...  

: Age-related macular degeneration (AMD) is an eye disorder affecting predominantly the older people above the age of 50 years in which the macular region of the retina deteriorates, resulting in the loss of central vision. The key factors associated with the pathogenesis of AMD are age, smoking, dietary, and genetic risk factors. There are few associated and plausible genes involved in AMD pathogenesis. Common genetic variants (with a minor allele frequency of >5% in the population) near the complement genes explain 40–60% of the heritability of AMD. The complement system is a group of proteins that work together to destroy foreign invaders, trigger inflammation, and remove debris from cells and tissues. Genetic changes in and around several complement system genes, including the CFH, contribute to the formation of drusen and progression of AMD. Similarly, Matrix metalloproteinases (MMPs) that are normally involved in tissue remodeling also play a critical role in the pathogenesis of AMD. MMPs are involved in the degradation of cell debris and lipid deposits beneath retina but with age their functions get affected and result in the drusen formation, succeeding to macular degeneration. In this review, AMD pathology, existing knowledge about the normal and pathological role of complement system proteins and MMPs in the eye is reviewed. The scattered data of complement system proteins, MMPs, drusenogenesis, and lipofusogenesis have been gathered and discussed in detail. This might add new dimensions to the understanding of molecular mechanisms of AMD pathophysiology and might help in finding new therapeutic options for AMD.


2020 ◽  
Vol 17 (4) ◽  
pp. 394-401
Author(s):  
Yuanhua Wu ◽  
Yuan Huang ◽  
Jing Cai ◽  
Donglan Zhang ◽  
Shixi Liu ◽  
...  

Background: Ischemia/reperfusion (I/R) injury involves complex biological processes and molecular mechanisms such as autophagy. Oxidative stress plays a critical role in the pathogenesis of I/R injury. LncRNAs are the regulatory factor of cerebral I/R injury. Methods: This study constructs cerebral I/R model to investigate role of autophagy and oxidative stress in cerebral I/R injury and the underline regulatory mechanism of SIRT1/ FOXO3a pathway. In this study, lncRNA SNHG12 and FOXO3a expression was up-regulated and SIRT1 expression was down-regulated in HT22 cells of I/R model. Results: Overexpression of lncRNA SNHG12 significantly increased the cell viability and inhibited cerebral ischemicreperfusion injury induced by I/Rthrough inhibition of autophagy. In addition, the transfected p-SIRT1 significantly suppressed the release of LDH and SOD compared with cells co-transfected with SIRT1 and FOXO3a group and cells induced by I/R and transfected with p-SNHG12 group and overexpression of cells co-transfected with SIRT1 and FOXO3 further decreased the I/R induced release of ROS and MDA. Conclusion: In conclusion, lncRNA SNHG12 increased cell activity and inhibited oxidative stress through inhibition of SIRT1/FOXO3a signaling-mediated autophagy in HT22 cells of I/R model. This study might provide new potential therapeutic targets for further investigating the mechanisms in cerebral I/R injury and provide.


Sign in / Sign up

Export Citation Format

Share Document