scholarly journals A PP2A-Integrator complex fine-tunes transcription by opposing CDK9

Author(s):  
Stephin J. Vervoort ◽  
Sarah A. Welsh ◽  
Jennifer R. Devlin ◽  
Elisa Barbieri ◽  
Deborah A. Knight ◽  
...  

SUMMARYGene expression is tightly controlled by Cyclin-dependent kinases (CDKs) which regulate the RNA Polymerase II (RNAPII) transcription cycle at discrete checkpoints. RNAPII pausing is a CDK9-controlled rate-limiting process that occurs shortly after initiation and is required for spatio-temporal control of transcription in multicellular organisms. We discovered that CDK9-mediated RNAPII pause-release is functionally opposed by a protein phosphatase 2A (PP2A) complex. PP2A dynamically competes for key CDK9 substrates, DSIF and RNAPII, and is recruited to transcription pausing sites by INTS6, a subunit of the Integrator complex. INTS6 depletion disrupts the Integrator-PP2A association and confers resistance to CDK9 inhibition. This results in unrestrained activity of CDK9 and dysregulation of acute transcriptional responses. Pharmacological PP2A activation amplifies RNAPII pausing mediated by CDK9 inhibitors and synergizes therapeutically in a model of MLL-rearranged leukemia. These data demonstrate that finely-tuned gene expression relies on the delicate balance of kinase and phosphatase activity throughout the transcription cycle.HIGHLIGHTSLoss of INTS6 confers resistance to CDK9 inhibitionINTS6 recruits PP2A to Integrator and chromatinPP2A/INTS6 complexes functionally oppose CDK9PP2A/INTS6 fine-tune acute transcriptional responsesSynergistic anti-cancer activity between PP2A activators and CDK9 inhibitors

Development ◽  
2021 ◽  
Vol 148 (24) ◽  
Author(s):  
Shari Carmon ◽  
Felix Jonas ◽  
Naama Barkai ◽  
Eyal D. Schejter ◽  
Ben-Zion Shilo

ABSTRACT Morphogen gradients are known to subdivide a naive cell field into distinct zones of gene expression. Here, we examine whether morphogens can also induce a graded response within such domains. To this end, we explore the role of the Dorsal protein nuclear gradient along the dorsoventral axis in defining the graded pattern of actomyosin constriction that initiates gastrulation in early Drosophila embryos. Two complementary mechanisms for graded accumulation of mRNAs of crucial zygotic Dorsal target genes were identified. First, activation of target-gene expression expands over time from the ventral-most region of high nuclear Dorsal to lateral regions, where the levels are lower, as a result of a Dorsal-dependent activation probability of transcription sites. Thus, sites that are activated earlier will exhibit more mRNA accumulation. Second, once the sites are activated, the rate of RNA Polymerase II loading is also dependent on Dorsal levels. Morphological restrictions require that translation of the graded mRNA be delayed until completion of embryonic cell formation. Such timing is achieved by large introns, which provide a delay in production of the mature mRNAs. Spatio-temporal regulation of key zygotic genes therefore shapes the pattern of gastrulation.


2020 ◽  
Author(s):  
Nicole Hawe ◽  
Konstantin Mestnikov ◽  
Riley Horvath ◽  
Mariam Eji-Lasisi ◽  
Cindy Lam ◽  
...  

AbstractCdk8 of the RNA Polymerase II mediator complex regulates genes by phosphorylating sequence specific transcription factors. Despite conserved importance for eukaryotic transcriptional regulation, the signals regulating Cdk8 are unknown. Full induction of the yeast GAL genes requires phosphorylation of Gal4 by Cdk8, and we exploited this requirement for growth of gal3 yeast on galactose to identify mutants affecting Cdk8 activity. Several mutants from the screen produced defects in TOR signaling. A mutant designated gal four throttle (gft) 1, gft1, was identified as an allele of hom3, encoding aspartokinase. Defects in gft1/ hom3 caused hypersensitivity to rapamycin, and constitutive nuclear localization of Gat1. Furthermore, mutations of tor1 or tco89, encoding TORC1 components, also prevented GAL expression in gal3 yeast, and tco89 was determined to be allelic to gft7. Disruption of cdc55, encoding a subunit of PP2A regulated by TOR signaling, suppressed the effect of gft1/ hom3, gft7/ tco89, and tor1 mutations on GAL expression in gal3 yeast, but not of cdk8/ srb10 disruptions or Gal4 S699A mutation. Mutations of gft1/ hom3 and tor1 did not affect kinase activity of Cdk8 in vitro, but caused loss of Gal4 phosphorylation in vivo. These observations demonstrate that TOR signaling regulates GAL induction through the activity of PP2A/ Cdc55, and are consistent with the contention that Cdk8-dependent phosphorylation of Gal4 S699 is opposed by PP2A/ Cdc55 dephosphorylation. These results provide insight into how induction of transcription by a specific inducer can be modulated by global nutritional signals through regulation of Cdk8-dependent phosphorylation.


2019 ◽  
Author(s):  
Carlos Perea-Resa ◽  
Leah Bury ◽  
Iain Cheeseman ◽  
Michael D. Blower

SummaryEntering mitosis, the genome is restructured to facilitate chromosome segregation, accompanied by dramatic changes in gene expression. However, the mechanisms that underlie mitotic transcriptional regulation are unclear. In contrast to transcribed genes, centromere regions retain transcriptionally active RNA Polymerase II (RNAPII) in mitosis. Here, we demonstrate that chromatin-bound cohesin is sufficient to retain RNAPII at centromeres while WAPL-mediated removal of cohesin during prophase is required for RNAPII dissociation from chromosome arms. Failure to remove cohesin from chromosome arms results in a failure to release elongating RNAPII and nascent transcripts from mitotic chromosomes and dramatically alters gene expression. We propose that prophase cohesin removal is the key step in reprogramming gene expression as cells transition from G2 to mitosis, and is temporally coupled with chromosome condensation to coordinate chromosome segregation with changes in gene expression.HighlightsMitotic centromere transcription requires cohesinCohesin removal releases elongating RNA Pol II and nascent RNA from chromatinThe prophase pathway reprograms gene expression during mitosis


2003 ◽  
Vol 14 (7) ◽  
pp. 2744-2755 ◽  
Author(s):  
Marganit Farago ◽  
Tal Nahari ◽  
Christopher Hammel ◽  
Charles N. Cole ◽  
Mordechai Choder

Changes in gene expression represent a major mechanism by which cells respond to stress. We and other investigators have previously shown that the yeast RNA polymerase II subunit Rpb4p is required for transcription under various stress conditions, but not under optimal growth conditions. Here we show that, in addition to its role in transcription, Rpb4p is also required for mRNA export, but only when cells are exposed to stress conditions. The roles of Rpb4p in transcription and in mRNA export can be uncoupled genetically by specific mutations in Rpb4p. Both functions of Rpb4p are required to maintain cell viability during stress. We propose that Rpb4p participates in the cellular responses to stress at the interface of the transcription and the export machineries.


2021 ◽  
Author(s):  
Tobias Gerber ◽  
Cristina Loureiro ◽  
Nico Schramma ◽  
Siyu Chen ◽  
Akanksha Jain ◽  
...  

In multicellular organisms, the specification, coordination, and compartmentalization of cell types enable the formation of complex body plans. However, some eukaryotic protists such as slime molds generate diverse and complex structures while remaining in a multinucleated syncytial state. It is unknown if different regions of these giant syncytial cells have distinct transcriptional responses to environmental encounters, and if nuclei within the cell diversify into heterogeneous states. Here we performed spatial transcriptome analysis of the slime mold Physarum polycephalum in the plasmodium state under different environmental conditions, and used single-nucleus RNA-sequencing to dissect gene expression heterogeneity among nuclei. Our data identifies transcriptome regionality in the organism that associates with proliferation, syncytial substructures, and localized environmental conditions. Further, we find that nuclei are heterogenous in their transcriptional profile, and may process local signals within the plasmodium to coordinate cell growth, metabolism, and reproduction. To understand how nuclei variation within the syncytium compares to heterogeneity in single-nucleated cells, we analyzed states in single Physarum amoebal cells. We observed amoebal cell states at different stages of mitosis and meiosis, and identified cytokinetic features that are specific to nuclei divisions within the syncytium. Notably, we do not find evidence for predefined transcriptomic states in the amoebae that are observed in the syncytium. Our data shows that a single-celled slime mold can control its gene expression in a region-specific manner while lacking cellular compartmentalization, and suggests that nuclei are mobile processors facilitating local specialized functions. More broadly, slime molds offer the extraordinary opportunity to explore how organisms can evolve regulatory mechanisms to divide labor, specialize, balance competition with cooperation, and perform other foundational principles that govern the logic of life.


2020 ◽  
Vol 477 (16) ◽  
pp. 3091-3104 ◽  
Author(s):  
Luciana E. Giono ◽  
Alberto R. Kornblihtt

Gene expression is an intricately regulated process that is at the basis of cell differentiation, the maintenance of cell identity and the cellular responses to environmental changes. Alternative splicing, the process by which multiple functionally distinct transcripts are generated from a single gene, is one of the main mechanisms that contribute to expand the coding capacity of genomes and help explain the level of complexity achieved by higher organisms. Eukaryotic transcription is subject to multiple layers of regulation both intrinsic — such as promoter structure — and dynamic, allowing the cell to respond to internal and external signals. Similarly, alternative splicing choices are affected by all of these aspects, mainly through the regulation of transcription elongation, making it a regulatory knob on a par with the regulation of gene expression levels. This review aims to recapitulate some of the history and stepping-stones that led to the paradigms held today about transcription and splicing regulation, with major focus on transcription elongation and its effect on alternative splicing.


2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenjing Qi ◽  
Erika D. V. Gromoff ◽  
Fan Xu ◽  
Qian Zhao ◽  
Wei Yang ◽  
...  

AbstractMulticellular organisms coordinate tissue specific responses to environmental information via both cell-autonomous and non-autonomous mechanisms. In addition to secreted ligands, recent reports implicated release of small RNAs in regulating gene expression across tissue boundaries. Here, we show that the conserved poly-U specific endoribonuclease ENDU-2 in C. elegans is secreted from the soma and taken-up by the germline to ensure germline immortality at elevated temperature. ENDU-2 binds to mature mRNAs and negatively regulates mRNA abundance both in the soma and the germline. While ENDU-2 promotes RNA decay in the soma directly via its endoribonuclease activity, ENDU-2 prevents misexpression of soma-specific genes in the germline and preserves germline immortality independent of its RNA-cleavage activity. In summary, our results suggest that the secreted RNase ENDU-2 regulates gene expression across tissue boundaries in response to temperature alterations and contributes to maintenance of stem cell immortality, probably via retaining a stem cell specific program of gene expression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuping Li ◽  
Xiaoju Liang ◽  
Xuguo Zhou ◽  
Yu An ◽  
Ming Li ◽  
...  

AbstractGlycyrrhiza, a genus of perennial medicinal herbs, has been traditionally used to treat human diseases, including respiratory disorders. Functional analysis of genes involved in the synthesis, accumulation, and degradation of bioactive compounds in these medicinal plants requires accurate measurement of their expression profiles. Reverse transcription quantitative real-time PCR (RT-qPCR) is a primary tool, which requires stably expressed reference genes to serve as the internal references to normalize the target gene expression. In this study, the stability of 14 candidate reference genes from the two congeneric species G. uralensis and G. inflata, including ACT, CAC, CYP, DNAJ, DREB, EF1, RAN, TIF1, TUB, UBC2, ABCC2, COPS3, CS, R3HDM2, were evaluated across different tissues and throughout various developmental stages. More importantly, we investigated the impact of interactions between tissue and developmental stage on the performance of candidate reference genes. Four algorithms, including geNorm, NormFinder, BestKeeper, and Delta Ct, were used to analyze the expression stability and RefFinder, a comprehensive software, provided the final recommendation. Based on previous research and our preliminary data, we hypothesized that internal references for spatio-temporal gene expression are different from the reference genes suited for individual factors. In G. uralensis, the top three most stable reference genes across different tissues were R3HDM2, CAC and TUB, while CAC, CYP and ABCC2 were most suited for different developmental stages. CAC is the only candidate recommended for both biotic factors, which is reflected in the stability ranking for the spatio (tissue)-temporal (developmental stage) interactions (CAC, R3HDM2 and DNAJ). Similarly, in G. inflata, COPS3, R3HDM2 and DREB were selected for tissues, while RAN, COPS3 and CS were recommended for developmental stages. For the tissue-developmental stage interactions, COPS3, DREB and ABCC2 were the most suited reference genes. In both species, only one of the top three candidates was shared between the individual factors and their interactions, specifically, CAC in G. uralensis and COPS3 in G. inflata, which supports our overarching hypothesis. In summary, spatio-temporal selection of reference genes not only lays the foundation for functional genomics research in Glycyrrhiza, but also facilitates these traditional medicinal herbs to reach/maximize their pharmaceutical potential.


Sign in / Sign up

Export Citation Format

Share Document